001491140 000__ 12053nam\\2200577\i\4500 001491140 001__ 1491140 001491140 003__ DLC 001491140 005__ 20240403003323.0 001491140 006__ m\\\\\o\\d\\\\\\\\ 001491140 007__ cr\cn\nnnunnun 001491140 008__ 230907s2024\\\\njua\\\\ob\\\\001\0\eng\d 001491140 010__ $$a 2023041015 001491140 020__ $$a9781394162871 001491140 020__ $$a1394162871 001491140 020__ $$a9781394162864 001491140 020__ $$a1394162863 001491140 020__ $$a1394162855 001491140 020__ $$a9781394162857 001491140 020__ $$z9781394162840 001491140 0247_ $$a10.1002/9781394162871$$2doi 001491140 040__ $$aNhCcYBP$$cNhCcYBP 001491140 042__ $$apcc 001491140 050_4 $$aTJ211$$b.I48144 2024 001491140 08200 $$a629.8/92$$223/eng/20231101 001491140 24500 $$aInfrastructure robotics :$$bMethodologies, robotic systems and applications /$$cedited by Dikai Liu [and three others]. 001491140 264_1 $$aHoboken, New Jersey :$$bJohn Wiley & Sons, Inc.,$$c[2024] 001491140 300__ $$a1 online resource (xxi, 402 pages) :$$billustrations (chiefly color) 001491140 336__ $$atext$$btxt$$2rdacontent 001491140 337__ $$acomputer$$bc$$2rdamedia 001491140 338__ $$aonline resource$$bcr$$2rdacarrier 001491140 4901_ $$aIEEE Press series on systems science and engineering ;$$v23 001491140 504__ $$aIncludes bibliographical references and index. 001491140 5050_ $$aAbout the Editors xv -- Preface xix -- Acronyms xxi -- Part I Methodologies 1 -- 1 Infrastructure Robotics: An Introduction 3 Dikai Liu and Gamini Dissanayake -- 1.1 Infrastructure Inspection and Maintenance 3 -- 1.2 Infrastructure Robotics 6 -- 1.2.1 Inspection and Maintenance of Steel Bridges 7 -- 1.2.2 Climbing and Wheeled Robots for Inspection of Truss Structures 8 -- 1.2.3 Robots for Underwater Infrastructure Maintenance 10 -- 1.3 Considerations in Infrastructure Robotics Research 11 -- 1.4 Opportunities and Challenges 13 -- 1.5 Concluding Remarks 15 -- Bibliography 15 -- 2 Design of Infrastructure Robotic Systems 19 Kenneth Waldron -- 2.1 Special Features of Infrastructure 19 -- 2.2 The Design Process 20 -- 2.3 Types of Robots and Their Design and Operation 21 -- 2.4 Software System Design 23 -- 2.5 An Example: Development of the CROC Design Concept 23 -- 2.6 Some Other Examples 27 -- 2.7 Actuator Systems 30 -- 2.8 Concluding Remarks 31 -- Bibliography 31 -- 3 Perception in Complex and Unstructured Infrastructure Environments 33 Shoudong Huang, Kai Pan, and Gamini Dissanayake -- 3.1 Introduction 33 -- 3.2 Sensor Description 35 -- 3.2.1 2D LiDAR 35 -- 3.2.2 3D LiDAR 35 -- 3.2.3 Sonar 36 -- 3.2.4 Monocular Camera 36 -- 3.2.5 Stereo Camera 36 -- 3.2.6 GRB-D Camera 37 -- 3.3 Problem Description 37 -- 3.4 Theoretical Foundations 38 -- 3.4.1 Extended Kalman Filter 39 -- 3.4.2 Nonlinear Least Squares 40 -- 3.4.3 Environment Representations 42 -- 3.4.4 Mapping Techniques 44 -- 3.4.5 Localization Techniques 47 -- 3.4.6 SLAM Techniques 49 -- 3.5 Implementation 53 -- 3.5.1 Localization 54 -- 3.5.2 Slam 54 -- 3.6 Case Studies 55 -- 3.6.1 Mapping in Confined Space 55 -- 3.6.2 Localization in Confined Space 55 -- 3.6.3 SLAM in Underwater Bridge Environment 56 -- 3.7 Conclusion and Discussion 56 -- Bibliography 57 -- 4 Machine Learning and Computer Vision Applications in Civil Infrastructure Inspection and Monitoring 59 Shuming Liang, Andy Guo, Bin Liang, Zhidong Li, Yu Ding, Yang Wang, and Fang Chen -- 4.1 Introduction 59 -- 4.2 GNN-Based Pipe Failure Prediction 60 -- 4.2.1 Background 60 -- 4.2.2 Problem Formulation 61 -- 4.2.3 Data Preprocessing 61 -- 4.2.4 GNN Learning 62 -- 4.2.5 Failure Pattern Learning 64 -- 4.2.6 Failure Predictor 65 -- 4.2.7 Experimental Study 65 -- 4.3 Computer Vision-Based Signal Aspect Transition Detection 67 -- 4.3.1 Background 67 -- 4.3.2 Signal Detection Model 67 -- 4.3.3 Track Detection Model 69 -- 4.3.4 Optimization for Target Locating 72 -- 4.4 Conclusion and Discussion 75 -- Bibliography 77 -- 5 Coverage Planning and Motion Planning of Intelligent Robots for Civil Infrastructure Maintenance 81 Mahdi Hassan and Dikai Liu -- 5.1 Introduction to Coverage and Motion Planning 81 -- 5.2 Coverage Planning Algorithms for a Single Robot 82 -- 5.2.1 An Offline Coverage Planning Algorithm 82 -- 5.2.2 A Real-Time Coverage Planning Algorithm 86 -- 5.3 Coverage Planning Algorithms for Multiple Robots 90 -- 5.3.1 Base Placement Optimization 90 -- 5.3.2 Area Partitioning and Allocation 93 -- 5.3.3 Adaptive Coverage Path Planning 97 -- 5.4 Conclusion 101 -- Bibliography 102 -- 6 Methodologies in Physical Human-Robot Collaboration for Infrastructure Maintenance 105 Marc G. Carmichael, Antony Tran, Stefano Aldini, and Dikai Liu -- 6.1 Introduction 105 -- 6.2 Autonomy, Tele-Operation, and pHRC 106 -- 6.2.1 Autonomous Robots 106 -- 6.2.2 Teleoperated Robots 108 -- 6.2.3 Physical Human-Robot Collaboration 109 -- 6.3 Control Methods 110 -- 6.3.1 Motion Control 110 -- 6.3.2 Force Control 111 -- 6.4 Adaptive Assistance Paradigms 113 -- 6.4.1 Manually Adapted Assistance 114 -- 6.4.2 Assistance-As-Needed Paradigms 115 -- 6.4.3 Performance-Based Assistance 115 -- 6.4.4 Physiology-Based Assistance 116 -- 6.5 Safety Framework for pHRC 117 -- 6.6 Performance-Based Role Change 119 -- 6.7 Case Study 121 -- 6.8 Discussion 122 -- Acknowledgements 123 -- Bibliography 123 -- Part II Robotic System Design and Applications 127 -- 7 Steel Bridge Climbing Robot Design and Development 129 Hung M. La -- 7.1 Introduction 129 -- 7.2 Recent Climbing Robot Platforms Developed by the ARA Lab 133 -- 7.3 Overall Design 134 -- 7.3.1 Mechanical Design and Analysis 136 -- 7.4 Overall Control Architecture 140 -- 7.4.1 Control System Framework 141 -- 7.5 Experiment Results 148 -- 7.5.1 Switching Control 149 -- 7.5.2 Robot Navigation in Mobile and Worming Transformation 152 -- 7.5.3 Robot Deployment 153 -- 7.6 Conclusion and Future Work 155 -- Bibliography 156 -- 8 Underwater Robots for Cleaning and Inspection of Underwater Structures 161 Andrew Wing Keung To, Khoa Le, and Dikai Liu -- 8.1 Introduction to Maintenance of Underwater Structures 161 -- 8.2 Robot System Design 163 -- 8.2.1 Hull Design and Maneuvering System 164 -- 8.2.2 Robot Arms for Docking and Water-Jet Cleaning 164 -- 8.3 Sensing and Perception in Underwater Environments 166 -- 8.3.1 Underwater Simultaneous Localization and Mapping (SLAM) Around Bridge Piles 167 -- 8.3.2 Marine Growth Identification 168 -- 8.4 Software Architecture 170 -- 8.5 Robot Navigation, Motion Planning and System Integration 170 -- 8.5.1 Localization and Navigation in Open Water 170 -- 8.5.2 System Integration 173 -- 8.6 Testing in a Lab Setup and Trials in the Field 174 -- 8.6.1 Operation Procedure 174 -- 8.6.2 Autonomous Navigation in Narrow Environments 176 -- 8.6.3 Vision-Based Marine Growth Removing Process 178 -- 8.6.4 Inspection and Marine Growth Identification 179 -- 8.7 Reflection and Lessons Learned 180 -- 8.8 Conclusion and Future Work 181 -- Acknowledgments 182 -- Bibliography 182 -- 9 Tunnel Structural Inspection and Assessment Using an Autonomous Robotic System 185 Juan G. Victores, E. Menendez, and C. Balaguer -- 9.1 Introduction 185 -- 9.2 ROBO-SPECT Project 186 -- 9.2.1 Robotic System 187 -- 9.2.2 Intelligent Global Controller 191 -- 9.2.3 Ground Control Station 192 -- 9.2.4 Structural Assessment Tool 192 -- 9.3 Inspection Procedure 192 -- 9.4 Extended Kalman Filter for Mobile Vehicle Localization 195 -- 9.5 Mobile Vehicle Navigation 197 -- 9.6 Field Experimental Results 198 -- 9.7 Conclusion 201 -- Bibliography 201 -- 10 BADGER: Intelligent Robotic System for Underground Construction 205 Santiago Martínez, Marcos Marín, Elisabeth Menéndez, Panagiotis Vartholomeos, Dimitrios Giakoumis, Alessandro Simi, and Carlos Balaguer -- 10.1 Introduction 205 -- 10.2 Boring Systems and Methods 207 -- 10.2.1 Directional Drilling Methods 207 -- 10.2.2 Drilling Robotic Systems 209 -- 10.3 Main Drawbacks 210 -- 10.4 BADGER System and Components 212 -- 10.4.1 Main Systems Description 212 -- 10.4.2 BADGER Operation 215 -- 10.5 Future Trends 218 -- Bibliography 218 -- 11 Robots for Underground Pipe Condition Assessment 221 Jaime Valls Miro -- 11.1 Introduction to Ferro-Magnetic Pipeline Maintenance 221 -- 11.1.1 NDT Inspection Taxonomy 222 -- 11.2 Inspection Robots 223 -- 11.2.1 Robot Kinematics and Locomotion 224 -- 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping 228 -- 11.3.1 Hardware and Software System Architecture 230 -- 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data 232 -- 11.4.1 Gaussian Processes 234 -- 11.5 Field Robotic CA Inspection Results 236 -- 11.6 Concluding Remarks 240 -- Bibliography 240 -- 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes 243 Sarath Kodagoda, Vinoth Kumar Viswanathan, Karthick Thiyagarajan, Antony Tran, Sathira Wickramanayake, Steve Barclay, and Dammika Vitanage -- 12.1 Introduction 243 -- 12.2 Nondestructive Sensing System for Condition Assessment of Sewer Walls 245 -- 12.3 Robotic Tool for Field Deployment 252 -- 12.4 Laboratory Evaluation 254 -- 12.5 Field Deployment and Evaluation 255 -- 12.6 Lessons Learned and Future Directions 258 -- 12.7 Concluding Remarks 259 -- Bibliography 260 -- 13 A Climbing Robot for Maintenance Operations in Confined Spaces 263 Gibson Hu, Dinh Dang Khoa Le, and Dikai Liu -- 13.1 Introduction 263 -- 13.2 Robot Design 265 -- 13.3 Methodologies 271 -- 13.3.1 Perception 271 -- 13.3.2 Control 274 -- 13.3.3 Planning of Robot Body Motion 279 -- 13.4 Experiments and Results 279 -- 13.4.1 Experiment Setup 279 -- 13.4.2 Lab Test Results 280 -- 13.4.3 Field Trials in a Steel Bridge 282 -- 13.5 Discussion 283 -- 13.6 Conclusion 283 -- Bibliography 284 -- 14 Multi-UAV Systems for Inspection of Industrial and Public Infrastructures 285 Alvaro Caballero, Julio L. Paneque, Jose R. 001491140 5050_ $$aMartinez-de-Dios, Ivan Maza, and Anibal Ollero -- 14.1 Introduction 285 -- 14.2 Multi-UAV Inspection of Electrical Power Systems 287 -- 14.2.1 Use Cases 287 -- 14.2.2 Architecture 288 -- 14.3 Inspection Planning 289 -- 14.3.1 Vehicle Routing Problem 289 -- 14.4 Onboard Online Semantic Mapping 296 -- 14.4.1 GNSS-Endowed Mapping System 296 -- 14.4.2 Reflectivity and Geometry-Based Semantic Classification 297 -- 14.4.3 Validation 298 -- 14.5 Conclusion 300 -- Bibliography 302 -- 15 Robotic Platforms for Inspection of Oil Refineries 305 Mauricio Calva -- 15.1 Refining Oil for Fuels and Petrochemical Basics 305 -- 15.2 The Inspection Process 307 -- 15.3 Inspection and Mechanical Integrity of Oil Refinery Components 310 -- 15.3.1 Liquid Storage Tank Inspection 310 -- 15.3.2 Pressurized Vessels Inspection 312 -- 15.3.3 Process Pipping 314 -- 15.3.4 Heat Exchanger Bundles 315 -- 15.4 Plant Operations, Surveillance, Maintenance Activities, and Others 316 -- 15.4.1 Surveillance, Operations, and Maintenance of Oil and Gas Refineries 316 -- 15.4.2 Safety and Security 318 -- 15.4.3 Utilities and Support Activities 318 -- 15.5 Robotic Systems for Inspection 319 -- 15.5.1 Robotics for Storage Tanks 320 -- 15.5.2 Robotics for Pressure Vessels 324 -- 15.5.3 Robotics for Process Piping 328 -- 15.5.4 Robotics Heat Exchanger Bundles 331 -- 1 ... 001491140 506__ $$aAccess limited to authorized users 001491140 533__ $$aElectronic reproduction.$$bAnn Arbor, MI$$nAvailable via World Wide Web. 001491140 588__ $$aDescription based on online resource; title from digital title page (viewed on December 27, 2023). 001491140 650_0 $$aRobotics. 001491140 650_0 $$aInfrastructure (Economics)$$zEurope$$0(DLC)sh2009127224 001491140 655_0 $$aElectronic books 001491140 7001_ $$aLiu, Dikai,$$eeditor. 001491140 7102_ $$aProQuest (Firm) 001491140 77608 $$iPrint version:$$tInfrastructure robotics$$dHoboken, New Jersey : Wiley, [2024]$$z9781394162840$$w(DLC) 2023041014 001491140 830_0 $$aIEEE Press series on systems science and engineering. 001491140 852__ $$bebk 001491140 85640 $$3GOBI DDA$$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=31015499$$zOnline Access 001491140 909CO $$ooai:library.usi.edu:1491140$$pGLOBAL_SET 001491140 980__ $$aBIB 001491140 980__ $$aEBOOK 001491140 982__ $$aEbook 001491140 983__ $$aOnline