001491822 000__ 05245nam\\2200553\i\4500 001491822 001__ 1491822 001491822 003__ NhCcYBP 001491822 005__ 20240503003211.0 001491822 006__ m\\\\\o\\d\\\\\\\\ 001491822 007__ cr\cn\nnnunnun 001491822 008__ 231028t20232023xxka\\\\ob\\\\001\0\eng\d 001491822 020__ $$a9781839534980 001491822 020__ $$a1839534982 001491822 020__ $$z9781839534973 001491822 040__ $$aNhCcYBP$$cNhCcYBP 001491822 050_4 $$aTK2897$$b.I63 2023 001491822 1001_ $$aIqbal, Muhammad,$$eauthor. 001491822 24510 $$aEnergy harvesting for wireless sensing and flexible electronics through hybrid technologies /$$cMuhammad Iqbal, Brahim Aïssa and Malik Muhammad Nauman. 001491822 264_1 $$aLondon, United Kingdom :$$bInstitution of Engineering and Technology,$$c2023. 001491822 264_4 $$c©2023 001491822 300__ $$a1 online resource (xxvi, 200 pages) :$$billustrations 001491822 336__ $$atext$$btxt$$2rdacontent 001491822 337__ $$acomputer$$bc$$2rdamedia 001491822 338__ $$aonline resource$$bcr$$2rdacarrier 001491822 4901_ $$aIET Materials, Circuits and Devices Series ;$$v78 001491822 500__ $$a10.6 Biomechanical energy harvesting through smart footwear 001491822 504__ $$aIncludes bibliographical references and index. 001491822 5050_ $$aIntro -- Title -- Copyright -- Contents -- List of figures -- List of tables -- List of abbreviations -- List of symbols -- About the authors -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Background -- 1.2 Book outline -- 2 Vibration-based energy harvesting -- 2.1 Introduction -- 2.2 VEH mechanisms -- 2.3 Wireless sensor nodes (WSNs) -- 2.4 Traditional electrochemical batteries as a power source for WSNs -- 2.5 Potential alternative sources to batteries -- 3 Piezoelectric, electromagnetic, and hybrid energy harvesters -- 3.1 Introduction -- 3.2 Vibration-based energy harvesting 001491822 5058_ $$a3.2.1 Piezoelectric energy harvesters -- 3.2.2 Electromagnetic energy harvesters -- 3.2.3 Hybrid energy harvesters -- 3.3 Comparison and discussion -- 3.4 Summary -- 4 Design and modeling of vibration energy harvesters -- 4.1 Introduction -- 4.2 Design and modeling -- 4.2.1 Architecture and the working mechanism -- 4.2.2 Finite element modeling -- 4.3 Comparison and discussion -- 4.4 Summary -- 5 Nonlinear 3D printed electromagnetic vibration energy harvesters -- 5.1 Introduction -- 5.2 Design and modeling -- 5.2.1 Architecture and the working mechanism -- 5.3 Experimental setup 001491822 5058_ $$a5.4 Modal analysis -- 5.5 Summary -- 6 Fabrication and characterization of nonlinear multimodal electromagnetic insole energy harvesters -- 6.1 Introduction -- 6.2 Design and modeling -- 6.2.1 Architecture and the working mechanism -- 6.2.2 Finite element modeling -- 6.3 Fabrication of prototypes and the experimental setup -- 6.4 Experimental results -- 6.5 Comparison and discussion -- 6.6 Summary -- 7 Design, modeling, fabrication, and characterization of a hybrid piezo-electromagnetic insole energy harvester -- 7.1 Introduction -- 7.2 Design and modeling -- 7.2.1 Structural design 001491822 5058_ $$a7.2.2 Finite element modeling -- 7.2.3 Electromechanical model -- 7.3 Fabrication and the experimental setup -- 7.4 Experimental results -- 7.5 Comparison and discussion -- 7.6 Summary -- 8 Multi-degree-of-freedom hybrid piezoelectromagnetic insole energy harvesters -- 8.1 Introduction -- 8.2 Design and modeling -- 8.2.1 Finite element modeling -- 8.3 Fabrication and the experimental setup -- 8.4 Experimental results -- 8.5 Comparison and discussion -- 8.6 Summary -- 9 Overview of the finite element analysis and its applications in kinetic energy harvesting devices -- 9.1 Introduction 001491822 5058_ $$a9.2 FEA applications for KEH devices -- 9.3 Applications and future directions -- 10 Energy harvesters for biomechanical applications -- 10.1 Introduction -- 10.2 Biomechanical energy -- 10.3 Key considerations for biomechanical energy harvesting -- 10.3.1 Excitation sources for biomechanical energy harvesting -- 10.3.2 Mechanical modulation techniques and energy conversion methods for biomechanical energy harvesting -- 10.4 Evaluation metrics for biomechanical energy harvesting -- 10.5 Recent designs and applications for biomechanical energy harvesting 001491822 506__ $$aAccess limited to authorized users 001491822 533__ $$aElectronic reproduction.$$bAnn Arbor, MI$$nAvailable via World Wide Web. 001491822 588__ $$aOnline resource; title from online title page (IET Digital Library, viewed on November 1, 2023). 001491822 650_0 $$aEnergy harvesting$$xTechnological innovations.$$0(DLC)sh2010001757 001491822 655_0 $$aElectronic books 001491822 7001_ $$aAïssa, Brahim,$$eauthor. 001491822 7001_ $$aNauman, Malik Muhammad,$$eauthor. 001491822 7102_ $$aProQuest (Firm) 001491822 77608 $$iPrint version:$$aIqbal, Muhammad$$tEnergy harvesting for wireless sensing and flexible electronics through hybrid technologies$$dLondon : Institution of Engineering and Technology,c2023 001491822 830_0 $$aMaterials, circuits and devices series ;$$v78. 001491822 852__ $$bebk 001491822 85640 $$3GOBI DDA$$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=30663209$$zOnline Access 001491822 909CO $$ooai:library.usi.edu:1491822$$pGLOBAL_SET 001491822 980__ $$aBIB 001491822 980__ $$aEBOOK 001491822 982__ $$aEbook 001491822 983__ $$aOnline