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ABSTRACT Simultaneous Localization and Mapping (SLAM) is one of the key issues for mobile robots
to achieve true autonomy. The implementations of SLAM could rely on a variety of sensors. Among many
types of them, the laser-based SLAM approach is widely used owing to its high accuracy, even in poor
lighting conditions. However, when in structure-less environments, laser modules will fail due to a lack
of sufficient geometric features. Besides, motion estimation by moving lidar has the problem of distortion
since range measurements are received continuously. To solve these problems, we propose a tightly-coupled
SLAM integrating LiDAR and an integrated navigation system (INS) for unmanned vehicle navigation in
campus environments. On the basis of feature extraction, a constraint equation for inter-frame point cloud
features is constructed, and the pose solution results of the INS are added as a priori data for inter-frame point
cloud registration. The Levenberg-Marquardt nonlinear least square method is used to solve the constraint
equation to obtain inter-frame pose relationships. Mapmatching and loop closure detection methods are used
to optimize the odometer, and the optimal pose information is obtained. The proposed SLAM algorithm
is evaluated by comparing with the classic open-source laser SLAM algorithms on the campus dataset.
Experimental results demonstrate that our proposed algorithm has certain advantages in estimating the
trajectory error of the unmanned vehicle and has higher mapping performance.

INDEX TERMS SLAM, mobile robot, localization and navigation, multi-sensor data fusion, liDAR and
INS, high-precision point cloud map.

I. INTRODUCTION
In recent years, the artificial intelligence (AI) industry has
obtained unprecedented development opportunities, and var-
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ious intelligent devices have begun to enter people’s daily
lives, such as smart homes, cleaning robots, cars, and so
on. However, with the continuous improvement of people’s
quality of life, people hope that robots can complete more
human repetitive work, or replace people to complete some
difficult and dangerous work. At present, robot technology
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has received extensive attention, especially the research on
mobile robot technology has become a research hotspot.
Intelligent mobile robots such as explosive handling robots,
substation detection robots and pipe gallery detection robots
have been produced and successfully applied in military,
civil, industrial and scientific research fields.

Mobile robot technology is a multifunctional integrated
system integrating environment perception, dynamic decision
and planning, and low-level control. To realize an intelligent
mobile robot, it is necessary to solve several problems such
as decision processing, autonomous control, environment
perception, positioning and navigation. Decision process-
ing includes receiving and analyzing various types of data
and making corresponding decisions; Autonomous control
includes motion control and control algorithm analysis;
Environmental perception, including vision, millimeter-wave
radar and liDAR technology, is used to identify the surround-
ing environment; Positioning and navigation Obtain real-time
vehicle position information, including Global Positioning
System (GPS), Inertial Navigation System (INS) and Simul-
taneous Localization and Mapping (SLAM) technology.
SLAM technology has always been the core issue of posi-
tioning and navigation of mobile robots. As a technology of
great practical significance, the core process can be summa-
rized into three steps, including pre-processing, matching and
map fusion [1]. The mobile robot carrying the sensor can
explore the unknown environment, process the sensor data to
estimate the robot’s state, and then complete the construction
of the geometric information of the environment, that is,
build themap according to themeasurement of environmental
information. The robot’s state is described by its attitude,
and the state can also contain other quantities, such as robot
speed, sensor deviation, and calibration parameters. The built
map is usually a representation of the area of interest. The
constructed environment map can be used for robot motion
planning and auxiliary positioning.

The concept of SLAM began in the 1980s and was
first proposed by Cheeseman [2] at the Internet Content
Rating Association (ICRA) in 1986. In 1995, Durrant-
Whyte [3] first proposed the algorithm framework for SLAM
problems, including data processing, odometer estimation,
back-end optimization and map construction, and gave the
convergence test results for SLAM problems. Probability
estimation theory is also gradually applied to SLAM, includ-
ing the famous Extended Kalman Filters (EKF) [4] and
Rao-Blackwellized Particle Filters (RBPF) [5] andMaximum
Likelihood Estimation (MLE), the difficulty in classical times
is efficiency and robustness of data association. Gmapping
[6], a mapping algorithm widely used at present, uses particle
filtering to locate and construct raster maps. Yang et al. [7]
from Didi proposed a robust mapping method suitable for
city-scale liDAR, which introduced a graph optimization
structure and used a multi-hypothesis extended Kalman filter
to remove dynamic objects. SLAM++ proposed by Salas-
Moren et al. [8] in 2013 can be regarded as the earliest

SLAMalgorithm using semantic information. In recent years,
a series of LLOAM [9], SegMap [10], CubeSLAM [11], [12]
based on point cloud segmentation, SuMa++ [13] based
on semantic information, ApriISAM [14] and deep learn-
based GEN-SLAM [15] have appeared in various peaks [16].
Gmapping is based on 2D liDAR and LOAM is based on 3D
liDAR [17], [18]. Among them, as 3D liDAR technology is
paid more and more attention and applied more and more
widely, 3D liDAR SLAM technology is also more and more.
Shan et al. [19] proposed a SLAMsystem capable of real-time
pose estimation and ground optimization in ground vehicles
with low-power embedded systems. Lin et al. [20] proposed
A robust and real-time liDAR SLAM algorithm for small
scenes and irregular sampling, which improved the accuracy
and efficiency compared with the existing A-LOAM [21]
by improving the front-end and back-end. Reference [22]
open source a correction framework for 3D laser SLAM,
Interactive SLAM. Compared with the current framework of
pure laser SLAM, Interactive SLAM can manually add or
subtract some constraint information, to make the point cloud
map better.

Since a single sensor often has its observation error which
is inevitable and will gradually increase with time, the
equipotential pose measurement sensor of an inertial navi-
gation system is usually introduced to estimate the current
pose as prior information of the perception sensor, which
can eliminate certain accumulated errors. Zuo et al. [23]
proposed a tightly coupled mileage calculation method based
on the Fusion of multiple sensors including liDAR, inertial
navigation and a camera, LIC Fusion, which can calibrate
the spatial and temporal relationship parameters of the three
sensors online. The robustness is superior to the existing
visual inertial odometer and liDAR odometer methods in
severe motion. Koide et al. [24] open-source a 6-DOF 3D
liDAR SLAM algorithm, HDL_graph_SLAM, on GitHub.
3D liDAR is mainly used to construct laser odometer, loop-
back detection and back-end image optimization, and IMU,
GPS and other information are also taken as additional con-
straints. Shao et al. [25] proposed a SLAM framework based
on binocular vision inertial radar in IROS2019, VIL-SLAM.
By combining a tightly coupled stereovision inertial odome-
ter with liDAR construction drawing and liDAR enhanced
visual closed-loop, the closed-loop corrected 6-DOF 3D
liDAR attitude can be obtained in real time. Mc2-SLAM [26]
is a real-time laser odometer system based on non-rigid
matching, which performs point cloud distortion compensa-
tion and point cloud matching in one optimization task and
also uses IMU pre-integration to improve accuracy, which
is second only to LOAM in KITTI data performance. LIO
jointly minimizes the cost of LiDAR and IMU measurement
values, and the drift of the odometer in long-term operation is
also within an acceptable range, which makes up for the defi-
ciency of independent sensors and proposes a tightly coupled
method [27], [28]. A computationally efficient and robust
LiDAR-inertial odomy framework was proposed that fuses
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LiDAR feature points with IMU data to enable robust navi-
gation in fast-moving, noisy or cluttered environments [29],
[30]. Geneva et al. [31] proposed a planar representa-
tion method based on the nearest point, constituting a
three-dimensional planar SLAMsystem of liDAR and inertial
elements. Qin et al. [32], Hong Kong University of Science
and Technology, proposed a robust and universal method for
inertial state estimation of deep coupled monocular vision.

This paper focuses on the current research work on the
3D laser SLAM algorithm and high-precision point cloud
map construction. Firstly, the system scheme is designed.
The initialization process of the multi-sensor fusion laser
system designed in this paper is introduced, including the
time synchronization of the multi-sensor. Then the basic pro-
cessing method of 3D laser point cloud and feature extraction
method based on roughness is introduced. Finally intro-
duced pose estimation based on point cloud registration,
using the integrated navigation system for calculating the
position of the results as a condition of registration at the
beginning, reusing the LM algorithm point cloud registration,
and using map matching and loopback detection position
optimization, finally get a picture can be used for driver-
less cars road campus auxiliary positioning test point cloud
maps.

II. MATERIALS AND METHODS
In this paper, multi-sensor fusion is adopted to construct the
SLAM system, and the pose calculation results of the inte-
grated navigation system are introduced into the interframe
registration of a three-dimensional laser point cloud. To a
certain extent, the cumulative errors caused by using lidar
alone can be reduced, and the accuracy of the final output
pose information and the constructed point cloud map can
be ensured. Figure 1 is the system block diagram designed
in this paper. With 3D liDAR and an integrated navigation
system as input, it is divided into four parts: SLAM system
initialization, point cloud processing and feature extraction,
pose estimation and map construction and pose optimization.
Finally, the point cloud map is output. The components of
each part are as follows:

System initialization: Because this article uses a combina-
tion of 3D liDAR and navigation systems belonging to two
different data types of sensors, and data update frequency
difference is bigger, with time by using the method of data
synchronization software implementation for the two kinds of
data, in addition to facilitate the subsequent data processing,
will transition to the two sensors under the same coordinate
system, is needed between the sensor and calibration; The
integrated navigation system calculates the pose of the current
carrier and takes the position of the first frame as the world
coordinate system.

Point cloud processing and characteristics: 3D laser point
cloud is corrected based on the external parameter calibration
and pose solution results of system initialization; Due to the
large amount of 3D laser point cloud data and many invalid
points affected by noise, a voxel raster filtering method is

used to filter the point cloud. Finally, the point cloud is
segmented and the plane and edge features are extracted by
the roughness of the point cloud.

Pose estimation: After extracting the characteristics of
the point cloud, constructing the frame, point cloud feature
constraint relations between constraint equation is obtained,
and on this basis, the use of position information of inte-
grated navigation system as the relations between the two
at the beginning of the frame of point cloud registration,
using LM nonlinear least squares method to solve the point
cloud transformationmatrix between frames, realize the point
cloud registration between frames, and estimate the current
position, And unify to the world coordinate system to get
odometer information.

Map and Pose optimization: Sitting posture estimation,
on the basis of using the map matching correction posture
information in time, however, map matching optimization is
based on the current point cloud and the relationship between
the point cloud maps, unavoidably will still be affected by
the accumulated error, so you also to join, a new method
for the optimization of the closed-loop detection using ICP
registration method to pose global optimization, and on this
basis, the construction of road environment map of the point
cloud.

FIGURE 1. System chart.

A. SYSTEM INITIALIZATION
1) SENSOR TIME SYNCHRONIZATION
In SLAM, when faced with some extreme environments or
too fast motion and too much jitter, the system using only
liDAR may lose frames, leading to the wrong estimation of
the pose at the next moment. Generally speaking, all pose
estimations of laser SLAM are based on the world coordinate
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system established for the first frame data, which may cause a
large cumulative error over time. In this paper, an integrated
navigation system is introduced for data fusion of multiple
sensors to solve this problem. However, before the fusion of
3D liDAR and integrated navigation systems, the relationship
between sensors and relevant data acquisition needs to be
initialized.

The 3D liDAR [33], [34] sensor and the integrated navi-
gation system used in this paper are two completely different
sensors with different properties and independent data, and
the scanning frequency of 3D liDAR is set at 10Hz, while the
data update frequency of the integrated navigation system is
set at 100Hz. There is no strict hardware time synchronization
between them. Due to the influence of trigger delay, trans-
mission delay and asynchronous clock sampling, time offset
often exists at different measurement moments, as shown in
Figure 2. Therefore, soft time synchronization processing is
carried out for the two sensors.

According to ROS robot operating system subscription and
distributed process mechanism, as a result of the integrated
navigation system data update frequency is higher than 3D
liDAR, the first to subscribe to news topic of 3D liDAR
and get the timestamp, then subscribe to the news of the
integrated navigation system is the subject to get away from
the 3D liDAR data frame with the shortest time stamp and get
the time difference value 1tk , Then the linear acceleration
and angular acceleration obtained by the integrated navi-
gation system can be integrated to obtain the displacement
and Angle offset of the carrier. Finally, the displacement
and Angle offset are reflected on the point cloud data of
the 3D liDAR to complete the soft time synchronization
processing.

FIGURE 2. Schematic diagram of data frame offset of the sensor at
different time.

2) MULTI-SENSOR EXTERNAL PARAMETER CALIBRATION
For multiple sensor fusion, the sensor coordinate system to
the outside reference parameters [35] relationship between
the data level fusion, unity, and the general for like liDAR
and integrated navigation system of different data types of
sensors, using the hand-eye calibration [36], [37] method
can solve the two sensors’ coordinate system between the
parameters, The integrated navigation system and 3D liDAR
used in this paper are fixed to the same mounting frame and
can be seen as a rigid body.

External rotation matrix of calibration [38], [39], the first
step to liDAR carrier to coordinate rotation matrix, calculate

the rotation matrix can be used to minimize differences in
function. However, because of the existence of the constraint
in the three-dimensional space of a Jacobian matrix, the
rotation matrix computation is more complex, so this article
uses iterative ideas to solve this problem. In each iteration,
the calibration results of the rotationmatrix at the last time are
used to estimate the zero deviation of the gyroscope, and then
the rotation matrix is corrected by the zero deviation. Finally,
a linear overdetermined equation is constructed to calculate
the new rotation matrix.

3) IMU AND GPS FUSION LOCALIZATION
Navigation parameters of inertial navigation system (INS) in
integrated navigation system mainly come from the solution
of IMU, which can also be simply understood as INS inertial
navigation system composed of IMU and related algorithms.
IMU is a MEMS sensor commonly used for carrier pose
estimation, consisting of an accelerometer, gyroscope and
magnetometer. The current acceleration, angular velocity and
magnetic field intensity of the carrier are measured.

IMU measurements contain two systematic errors and
random errors. The systematic error includes scale factor
deviation, zero deviation and axis deviation of accelerometer
and gyroscope, while random error includes quantization
noise, zero deviation instability and random walk noise.
It is usually necessary to calibrate the systematic error and
random error of IMU to obtain the true value of IMU. Sys-
tematic errors can be calibrated using the six-sided method
and random errors can be analyzed using the Allan variance
method.

GPS positioning inevitably has some positioning errors,
the error sources are generally GPS own error, GPS sig-
nal transmission error and client receiver error. Differential
GPS is a positioning method that eliminates positioning error
sources of GPS reference receiver (reference station) and
client (mobile station) by using real-time or post-processing
technology. Differential GPS can be divided into position
differential, pseudo-range differential and carrier phase dif-
ferential according to different signal modes. Their working
principle is the same, the difference lies in the content of
the correction signal is not the same, and its positioning
accuracy is also different. Carrier phase differential technol-
ogy, also known as Real Time Kinematic technology (RTK),
is a positioning technology that processes the carrier phase
between the reference station and mobile station in Time. The
mobile station receives carrier phase from the GPS satellite
and reference station respectively, and the phase differen-
tial observation value is formed for timely processing, with
accuracy up to centimeter level. In this paper, RTK location
information is used as a real reference to compare the location
results.

This paper mainly uses the Kalman filtering algorithm to
fuse the IMU and GPS data of integrated navigation through
four steps: data preprocessing, attitude calculation, position
calculation, and data fusion, providing prior data for subse-
quent laser odometry, and using RTK as the standard value.
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B. POINT CLOUD PROCESS
1) POINT CLOUD FILTER
When collecting 3D laser point cloud data, due to the
influence of electromagnetic wave diffraction characteristics,
surface properties of the measured object, human factors,
environmental factors and other factors, it is inevitable to
cause some outliers in point cloud data. To avoid the influence
of these outliers on feature extraction, point cloud registra-
tion, visualization and other processes in subsequent point
cloud processing, it is necessary to filter the point cloud data
to eliminate the influence of these outliers.

Because of Velodyne HDL-32E [40] amount of a single
frame of point cloud data collected is larger, the point cloud
was ray traits, dense areas near the liDAR point cloud, far
area is thin, it is not using the algorithm of a point cloud of
follow-up to deal with, so this article use of voxel filtering
for 3D laser point cloud filter, not only can remove outliers,
also can undertake under the point cloud sampling at the same
time keep the shape feature point cloud.

To better retain the characteristic shape of the point cloud,
the voxel size used in this paper is 0.2.

2) FEATURE EXTRACTION AND OPTIMIZATION
To efficiently represent environmental information, a small
amount of data is often needed to describe the environment,
which requires that these data can be repeatedly observed
from multiple angles and can clearly distinguish the sur-
rounding points, namely feature points. In the 3D laser SLAM
algorithm, the feature points need to meet the conditions of a
sufficient number, static feature points and a simple and effi-
cient feature extraction method. Compared with the image,
the 3D laser point cloud can directly obtain the depth infor-
mation of the surrounding environment, but due to the lack
of texture information, the characteristics of the point cloud
are monotonous. Although point cloud features can describe
some shapes, such as points, lines and planes, it is very chal-
lenging to realize repeatable observation of extracted point
cloud features due to the influence of point dispersion and
data loss.

To make point cloud feature extraction efficient, accurate
and reliable, this paper introduces a feature extraction method
by calculating the barycenter distance between the point to be
measured and the neighborhood point set, which can also be
seen as calculating the roughness of the point to be measured
and the neighborhood point set, similar to curvature. The
points with large or small fluctuations in the point cloud are
found as feature points according to the roughness. Due to a
large amount of point cloud data, the horizontally adjacent
point sets are from the same laser channel relative to the
vertical point sets, so it is of greater reference significance to
search for their features. Therefore, point clouds in the same
channel need to be classified, and then point cloud features
are extracted.

Figure 3 shows the feature extraction diagram between
the points to be measured and the neighborhood points. Red
points are the points to be measured, and green points are

FIGURE 3. Schematic diagram of feature extraction.

the neighborhood points with the same ID of the points to be
measured. Point cloud roughness is calculated according to
equation (1).

c =
1

|S|
∥∥P(k,i)

∥∥ ∥∥∥∑
j∈S,j̸=i

(
P(k,i) − P(k,j)

)∥∥∥ (1)

where, P(k,i) and P(k,j) respectively represent the coordinate
value of the point i and point j of the unified ID in the point
cloud Pk . The point i is the point to be measured, S is the
number of the point’s neighborhood point set, and c is the
roughness of the point and neighborhood point set. The larger
c, the larger the roughness of the point, and the farther the
distance from the neighboring point set, the point may be
an edge point. On the contrary, the smaller c, the smaller
the roughness of this point, and the closer the distance to
the neighborhood point set, so this point may be a plane
point. The edge feature point set extracted from Pk the point
cloud is represented by εk , and the plane feature point set is
represented by ξk .

3) POINT CLOUD SEGMENTATION
To improve the efficiency of plane feature extraction, a fast
point cloud plane acquisition method ground estimation is
used to improve the efficiency of plane point feature extrac-
tion. The point cloud of 3D liDAR is distributed in ray form,
and the adjacent relation between channels is calculated to
determine whether it is ground or not.

θ = arctan

√(
x(k,i) − x(k−1,i)

)2
+

(
y(k,i) − y(k−1,i)

)2∣∣(z(k,i) − z(k−1,i))∣∣ (2)

where, k and k − 1 are the channel ID of the liDAR,(
x(k,i), y(k,i), z(k,i)

)
and

(
x(k−1,i), y(k−1,i), z(k−1,i)

)
are the

coordinate values of the two points of the adjacent channel, θ
is the included angle between the two points and the liDAR
coordinate system, if less than the threshold, the point is the
ground.

In addition, there will be a large number of trees and
vegetation on both sides of the campus road, so it is diffi-
cult to achieve repeatable observation of features extracted
from leaves and grass leaves. To improve the efficiency of
the algorithm and filter out invalid features, the point cloud
after filtering ground was classified based on the fast image
segmentation algorithm, and the categories less than 30 were
ignored.

As shown in Figure 4, O is the origin of the liDAR
coordinate system, A and B are two points in the point
cloud respectively, OA and OB represent the relative distance
between the two points and the origin of coordinates.Whether
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FIGURE 4. Point cloud feature object classification.

points A and B belong to the same object can be estimated by
the angles of the triangle formed by points A, B and O.

β = arctan
∥BH∥
∥HA∥

= arctan(
dOBsinα

dOA − dOBcosα
) (3)

dOA and dOB are the distances of points A and B to the
origin of the liDAR coordinate system respectively, and α

represents the horizontal angular resolution of the liDAR.
Combined with Figure 4, it can be seen that when β is greater
than a certain threshold, two points are regarded as the same
object, as shown in The green line in Figure 4 When β is
less than a certain threshold, it indicates that the depth of
two points varies greatly and they do not belong to the same
object, as shown in The red line in Figure 4.

C. POSE ESTIMATION AND OPTIMIZATION
1) INTERFRAME POINT CLOUD FEATURE CONSTRAINTS
Due to the huge point cloud data of each frame, each point in
the point cloud occupies different time stamps with a distant
distribution. Before inter-frame feature constraint, the point
cloud data of the two adjacent frames need to be unified to
the same moment.

As shown in Figure 5, the blue line represents the point
cloud Pk in the frame k of point cloud data obtained by
liDAR, and tk is the time stamp of the point cloud Pk .
Similarly, the red line represents the point cloud Pk+1 in
the frame k + 1 of point cloud data obtained by liDAR,
and tk+1 is the time stamp of the point cloud Pk+1. The
point cloud Pk is represented by P̄k when it is re-projected
to tk+1, and the green line in Figure 5. In this way, the
point cloud Pk of the frame k and the point cloud Pk+1
of the frame k + 1 can be unified at the same time for
inter-frame feature constraints. In this paper, the constraints
of point-to-line and point-to-plane distance between the fea-
tures of point clouds in adjacent frames are used to form
nonlinear optimization problems, and the pose relationship is
solved.

Through the feature extraction method, the edge point set
εk+1 and flat point set ξk+1 can be obtained in the point cloud

FIGURE 5. Point cloud scanning update process.

Pk+1, and feature lines and feature planes corresponding to
εk+1 and ξk+1 can be found in the point cloud P̄k . As time
goes on, more point cloud data frames Pk+1 will be acquired
gradually. In each iteration, εk+1 and ξk+1 are projected to
the timestamp of the current data frame according to the
currently estimated conversion relationship, represented by
ε̃k+1 and ξ̃k+1 respectively. For each point at ε̃k+1 and ξ̃k+1,
the corresponding nearest point can be found in the point
cloud P̄k . Different inter-frame feature constraint relations
can be constructed by the feature edge point set and feature
plane point set of each frame data.

a: CONSTRAINTS OF POINT AND LINE
As shown in Figure 6 (a), let i be a point in the set of feature
edge points ε̄k+1, i ∈ ε̃k+1. The edge line j ∈ P̄k , m is the
sub-adjacent point from the point i on the front and back
channels of the channel where point j,m ∈ P̄k . Points j andm
form an edge line in P̄k and are located in different channels.
Then the distance between the edge point i and the edge line
constitutes the point line constraint relation.

dε =

∣∣(P(k+1,i) − P(k,j))× (P(k+1,i) − P(k,m))
∣∣∣∣P(k,j) − P(k,m)∣∣ (4)

where, P(k,j) and P(k,m) are the coordinate values of point j
and point m in point cloud P̄k respectively, and P(k+1,i) is the
coordinate values of point i in the set ε̄k+1 after the projection
of feature edge points in the point cloud Pk+1.

b: CONSTRAINTS OF POINT AND SURFACE
In Figure 6 (b), i is set as a point in the set of feature plane
points ξ̃k+1, i ∈ ξ̃k+1.Similar to the point-line constraint, the
nearest proximity of the KD tree is used to search for the
nearest point j of the point cloud P̄k midpoint i, j ∈ P̄k . Then
find point m and point n as the next adjacent points of point i,
m ∈ P̄k , n ∈ P̄k , point m and point j are on the same channel,
and the point n is on the adjacent channel of point j.

FIGURE 6. Schematic diagram of feature constraint construction.
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In particular, points j, m, and n are not collinear. In this
way, these three points can form a plane P̄k , and the distance
between the plane point i and the plane constitutes the point-
plane relation.

dξ =

∣∣(P(k+1,i)−P(k,j))((P(k,j)−P(k,m))×(P(k,j)−P(k,n)))∣∣∣∣(P(k,j) − P(k,m))× (P(k,j)−P(k,n))
∣∣

(5)

where, P(k,j), P(k,m) and P(k,n) are the coordinate values of
point j, pointm and point n in the point cloud P̄k respectively,
and P(k+1,i) is the coordinate values of point i in the set
ξ̃k+1 after the projection of feature plane points in the point
cloud Pk+1.

2) POSE ESTIMATION
In this section, we need to use the nonlinear least square
LM method to solve the inter-frame pose conversion, carry
out the point cloud inter-frame accurate registration, and
build the pose odometer. The Levenberg-Marquardt (LM)
algorithm [41], [42] is an optimization method commonly
used in nonlinear least squares problems. It has the charac-
teristics of a gradient descent algorithm and a Gauss-Newton
algorithm. It can solve the case of the Hessian Matrix with
non-rank and non-positive definite.

The 3D liDAR and integrated navigation system used in
this paper can be regarded as the same rigid body as the
carrier, and the movement state of the carrier can be estimated
by a 3D laser point cloud and inertial navigation system.
In each point cloud data acquisition cycle, the movement of
the carrier can be regarded as being carried out at constant
angular velocity and linear velocity. Therefore, linear inser-
tion pose transformation can be used for points in the same
period obtained at different times. Suppose that the current
timestamp of the point cloud of the frame k + 1 is t , tk+1 is
the starting timestamp of the point cloud of the frame k + 1,
and Tk+1 is the 6-DoF pose transformation of 3D liDAR
in [tk+1, t], Tk+1 =

[
tx , ty, tz, θx , θy, θz

]
. Where,

[
tx , ty, tz

]
and

[
θx , θy, θz

]
represent the translation and rotation Angle

corresponding to the X, Y and Z axes of the 3D liDAR
coordinate system respectively. If ti is set as the timestamp
of a point in the point cloud Pk+1, the corresponding pose
transformation matrix T(k+1,i) at [tk+1, ti] can be obtained by
linear interpolation of Tk+1.

T(k+1,i) =
ti − tk+1
t − tk+1

Tk+1 (6)

Therefore, according to the feature point-line constraint
and feature point-plane constraint constructed in section C(1),
the constraint relation between point cloud coordinates and
pose transformation can be obtained.

fε(P(k+1,i),Tk+1) = dε, i ∈ εk+1 (7)

fξ (P(k+1,i),Tk+1) = dξ , i ∈ ξk+1 (8)

Because different feature points have different advantages,
plane feature points are extracted based on ground segmenta-
tion in the early stage, which can intuitively reflect the height

change of the Z axis, roll Angle change around the X axis and
pitch Angle change around the Y axis. Therefore, the whole
pose solution is divided into two steps. First,

[
tz, θx , θy

]
in the

pose is calculated by using plane features, which are taken
as the initial iterative value of edge feature points. Finally,[
tx , ty, θz

]
is calculated as the unknown quantity of the rest of

the pose.
Therefore, the LM algorithm can obtain the solution for-

mula of pose transformation.

Tk+1← Tk+1 − (JT J + λ I )−1JT f (9)

where, f is the constraint equation, J represents f for the
Jacobian matrix of the variable Tk+1 to be solved. According
to the chain method.

Jk+1 =
∂f

∂Tk+1
=

∂f
∂P(k+1,i)

∂P(k+1,i)
∂Tk+1

(10)

D. POINT CLOUD MAP CONSTRUCTION
The purpose of this paper is to build a point cloud map for
driverless vehicles to assist in locating on campus roads.
Based on the optimal pose, the point cloud of the corre-
sponding pose is converted to the world coordinate system
(map coordinate system), that is, the point cloud map can
be obtained. On the basis of point cloud registration, multi-
sensor fusion laser odometer, map matching and loopback
detection are used to optimize the pose.

1) MAP MATCHING OPTIMIZATION
Based on the least square method introduced in Section C(2),
the rotation and displacement pose transformation relations
of the point cloud of adjacent frames are solved. With the
continuous increase of point cloud data frames, the position
and pose transformation relations of adjacent points are con-
tinuously superimposed to obtain the liDAR moving track,
namely the laser odometer. Since a single sensor cannot
effectively eliminate the accumulated errors caused by point
registration of each adjacent frame, the data information of
the integrated navigation system should be introduced as the
prior information of point cloud registration to reduce the
impact of the accumulated errors of a single sensor on pose
estimation. After the time synchronization processing of 3D
liDAR and integrated navigation system, the pose solution
method can be used to obtain the initial conversion relation
of point clouds of adjacent frames for the initial registration
of point clouds. Then, on the basis of initial registration, the
point cloud registration method in Section C(2) can be used
for precise registration. Finally, the laser odometer after data
fusion is obtained after two-point cloud registration.

To make pose estimation more accurate, map matching
optimization is carried out based on the laser odometer
with multi-sensor fusion. Map matching optimization is to
optimize the part of the constructed map and the currently
estimated pose. According to Section C(1), the adjacent
frame point cloudswithin time [tk , tk+1] are first re-projected,
and the pose transformation relation of the adjacent frame
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point clouds within time intervals [tk , tk+1] is estimated as
T kk+1 through the above method. SupposeMk is the map at tk
moment, and the pose in the world coordinate system is TWk ,
then T kk+1 and T

W
k can get the pose TWk+1 of Pk+1 in the world

coordinate system, and then transform P̄k+1 into the world
coordinate system, to get the map M̃k+1 at tk+1. At this point,
according to the feature constraint thought in Section C(1),
Mk and M̃k+1 constraint relations were constructed by using
the feature points of the current point cloud PK +1∼. The
point cloud registration method in Section C(2) was used to
complete the registration of the point cloud P̄k+1 andmapMk ,
and the optimized pose TWk+1 and mapMk+1 were obtained.

2) LOOPBACK DETECTION OPTIMIZATION
The position that the robot passed at a certain moment before
it passed (called revisiting), and the effective recognition
of the revisiting position (namely loopback detection) are
related to posing optimization. Although the first two sections
have used multi-sensor fusion and map matching to optimize
the pose, both of them are based on the relationship between
adjacent data frames to optimize the pose, which still has
a certain cumulative error, so global pose optimization is
needed, namely loopback detection and poses optimization.

As time goes by, the number of point clouds in the map
will increase more and more, and the global optimization
using the whole established map will greatly increase the
computational burden of the algorithm. In this paper, with
0.5m as a unit, the calculated pose is saved as a key data
frame, and the features and poses of the key data frame
are saved in the KD tree. Then, the nearest neighbor search
method of the KD tree is used to calculate the pose of the
key data frame within the radius of 20m of the current pose
and obtain its features. Finally, the ICP point cloud matching
method is used to match the point cloud of the current point
cloud and the keyframe, and the relative pose is calculated.
Gtsam [42] is used to optimize the pose of the stored keyframe
to eliminate accumulated errors and complete the global pose
optimization.

In general, it is considered that the odometer pose data out-
put at a high frequency in a short time is relatively accurate,
and the global pose will not be affected by reducing the pro-
cessing frequency of map matching and loop optimization.

III. RESULTS
A. POINT CLOUD SEGMENTATION AND FEATURE
EXTRACTION EXPERIMENTS
In this section, based on the feature extraction method intro-
duced above, a feature extraction experiment is designed
based on point cloud segmentation using the characteristics
of point cloud roughness, and the feature extraction effect is
compared with whether point cloud segmentation is carried
out. Figure 7 shows the point cloud after point cloud segmen-
tation, where the yellow point cloud refers to ground point
cloud segmentation and the black point cloud refers to point
cloud segmentation.

FIGURE 7. Point cloud segmentation results.

A comparative experiment of feature distribution extracted
before and after point cloud segmentation was designed
for three different scenes. Experimental results as shown
in Figure 8, for feature extraction of ordinary road scene
1 distribution Figure 8 (a) and (b), from close to the road
building scene 2 distribution of feature extraction for Figure 8
(c) and (d), a wide range of scenario3Distribution of feature
extraction for Figure 8 (e) and (f), Figure 8 (a), (c) and (e)
not on point cloud segmentation to extract the characteristics
of distribution, Figure 8 (b), (d) and (f) is the feature dis-
tribution extracted after point cloud segmentation, wherein
yellow point cloud is the planar feature, the black point cloud
is the largest planar feature, the red point cloud is the edge
feature, and the green point cloud is the smallest edge feature.
As can be seen from Figure 8, red and green edge features
are mostly distributed on tree trunks, grass and the edge
of buildings, while yellow and black plane features are dis-
tributed on the ground and surface of buildings. It shows that
feature extraction based on roughness is effective and can be
used as an effective feature point of the scene. Among them,
edge features and plane features extracted before point cloud
segmentation are easily affected by small objects, grassland
and tree canopies, and their distribution is chaotic without
obvious separation. The features extracted based on point
cloud segmentation are distributed evenly and rationally, and
the number of features is greatly reduced, excluding the
influence of grass and tree canopy.

The plane features come from the point cloud after ground
segmentation, and the edge features come from the point
cloud after object segmentation.

Table 1 shows the comparison between the number of
features and the corresponding computing time of the above
three scenarios. It can be seen from the table that the number
of features extracted based on point cloud segmentation is
significantly reduced and the computing time is significantly
reduced, which is more conducive to the subsequent point
cloud feature registration.

B. POINT CLOUD REGISTRATION EXPERIMENTS
As shown in Figure 9, point cloud Pk at tk moment (yellow)
and point cloud Pk+1 at tk+1 moment (red) respectively.
By using the point cloud registration method, the transfor-
mation matrix T kk+1 between the point cloud Pk+1 and point
cloud Pk can be obtained, and the value of T kk+1 is shown
in Formula 11, as shown at the bottom of the next page.
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FIGURE 8. Comparison of feature extraction distribution before and after point cloud segmentation.

Pk+1 is unified into the Pk coordinate system through the
transformation matrix T kk+1, and the point cloud registration
result as shown in Figure 10 is obtained.

From Figure 10, point cloud registration results and trans-
formation between the frame matrix T kk+1 can be seen, due
to the time interval of the two point clouds being small,
the rotation matrix transformation matrix is close to the unit
matrix, the indication of the relative momentum transfer of
two point cloud is very small, and translation vector responses
in three directions of translational value, close to the vehicle
moving displacement.

C. MAP CONSTRUCTION AND POSE OPTIMIZATION
The point cloud map constructed in this paper represents the
height distribution of the point cloud map based on the color
distribution. The cool color indicates the lower the height, and
the warm color indicates the higher the height. Figure 11 is
the point cloud map directly constructed by using the position
and pose solved by the integrated navigation system, that is,
the initial registration of the point cloud. Each frame of the
point cloud is converted to the map coordinate system accord-
ing to the position and pose solved by the corresponding
integrated navigation system, and the map coordinate system

T kk+1 =


0.999996 0.0013327 −0.0023995 0.15093
−0.0013264 0.999996 0.0026444 −0.002399
0.0024030 −0.0026412 0.999994 0.064744

0 0 0 1

 (11)
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TABLE 1. The comparison results of feature extraction.

FIGURE 9. Point clouds of two adjacent frames before registration.

FIGURE 10. Point cloud after registration.

and the world coordinate system are defined as the same
coordinate system. The constructed point cloud map does not
carry out inter-frame registration of the point cloud. Although
it roughly conforms to the actual scene around campus roads,
the point cloud distribution is chaotic and cannot be used
directly.

Figure 12 is the point cloud map constructed by using
only a 3D laser point cloud for interframe registration of the
point cloud. Compared with Figure 11, the point cloud is
much cleaner. However, due to accumulated error, according
to the height color information of the point cloud map, the

FIGURE 11. Point cloud map based on the pose of the integrated
navigation system.

FIGURE 12. Point cloud map is constructed using only 3D laser point
cloud interframe registration.

whole point cloud map is not on the same plane, so there is
no closure and obvious faults. Therefore, before inter-frame
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registration, the position and pose calculated by the integrated
navigation system can be used as the initial registration infor-
mation to reduce a certain cumulative error.

Figure 13 is a point cloud map constructed by map match-
ing optimization based on the prior information of accurate
interframe registration of the point cloud solved by the inte-
grated navigation system. Compared with the point cloud
map constructed by using only a 3D laser point cloud, the
distribution of the point cloud is cleaner and the surrounding
environment of campus road is more specific. However, due
to the influence of cumulative error, trees on both sides of
the road appear obvious dislocation at the loopback position
marked in the red box in Figure 13, as shown in Figure 14 (a).
After loopback detection optimization, point clouds at

loopback locations are optimized, as shown in Figure 14 (b).
Finally, a globally consistent point cloud map is constructed,
as shown in Figure 15.

The pose estimation of pure 3D laser point cloud was
compared with the optimized pose, and the RTK positioning
result was taken as the standard quantity. The experimental
results are shown in Figure 16 and Figure 17.

FIGURE 13. Point cloud map constructed by data fusion of 3D liDAR and
integrated navigation system.

FIGURE 14. Optimization comparison before and after loopback points in
the point cloud map.

Figure 16 and Figure 17 respectively show the position
comparison of different pose estimation results in the X-Y
plane and Z axis. The green curve is the pose trajectory
estimated using only a 3D laser point cloud; the red curve
is the optimized pose trajectory after inter-frame registration
based on the initial pose registration of the integrated nav-
igation system; and the black curve is the RTK positioning
result. It can be seen that the pose estimation based only

FIGURE 15. Optimized global consistency point cloud map.

FIGURE 16. Pose estimation of the trajectory X-Y plane.

FIGURE 17. Pose estimation of Z-axis trajectory.

on a 3D laser point cloud has high accuracy in the initial
period, but with the continuous increase of data frames, the
cumulative error increases, leading to the divergence of the
pose. After introducing the pose information of the integrated
navigation system for initial registration and optimization, the
pose estimation result is significantly improved and roughly
consistent with the RTK result.

Due to the flat terrain and small difference in roll Angle and
pitch Angle during the collection of a campus environment
data, a course angle comparison of pose estimation results
was conducted, as shown in Figure 18. It can be seen from the
figure that the heading Angle estimated only by the 3D laser
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TABLE 2. Comparison of measurement values of road width of sections.

FIGURE 18. Pose estimation of course angle.

FIGURE 19. The position mark of a measurement position in a point
cloud map.

point cloud gradually diverges over time. After optimization,
the accuracy of the heading angle is improved and can be
roughly consistent with the heading result measured by RTK.

FIGURE 20. Point cloud images and actual images of three road sections
were measured.

To verify the road accuracy of the point cloud map con-
structed in this paper, a relatively reliable accuracy value can
be obtained by comparing the constructed point cloud map
model with the real environment. Three sections of the road
point cloud are taken from labels 1, 2 and 3 respectively, and
their approximate positions are shown in Figure 19. The three
sections of the road are shown in Figure 20 (a), (c) and (e),
and the actual scene is shown in Figure 20 (b), (d) and (f).
In the road point cloud model reconstructed from the point
cloud map, the road edge and the road plane are divided. The
measurement of road width is from the bottom of one side of
the road to the bottom of the other side of the road, and the
specific measurement data is shown in Table 2.
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FIGURE 21. Point cloud model for measuring objects.

FIGURE 22. Trajectory map of the unmanned vehicle driving.

As can be seen from Table 2, the maximum error of the
three sections is 0.061m, and the minimum error is 0.021m.
In addition, the measurement data of the point cloud map
is smooth and has no difference, which meets the accuracy
requirements of the test of unmanned vehicles on campus
roads.

To further verify the accuracy of the point cloud map,
the accuracy measurement is carried out on three objects in
the point cloud map environment, the specific locations are
labeled 4, 5 and 6 in Figure 19. Label 4 is a sculpture model,
as shown in Figure 21 (a). Thewidth of the trapezoidal base of
the sculpture is measured from bottom to top and the average
value is taken. Label 5 is the security pavilion, as shown
in Figure 21 (c), which mainly measures the width of the
security pavilion. Label 6 is the newspaper column, as shown
in Figure 21 (e), which mainly measures the width between
two walls. (b), (d) and (f) in Figure 21 are the real images
of corresponding objects respectively. The three-point cloud

FIGURE 23. Trajectory comparison of multiple SLAM algorithms.

models were measured 5 times respectively, and the specific
measured values are shown in Table 3.
It can be seen from the point cloudmodels of three different

objects in Figure 21 that the point cloud map construction
method in this paper can reconstruct the point cloud models
of objects in the environment and intuitively distinguish the
shapes and contours of objects.

According to the measurement data in Table 3, the mea-
sured objects are all standard sizes, and the error value is
smaller than that of the section error. Because of the 3D laser
point cloud radiated, with the increase of distance, measure-
ment error will increase, so the distance of 8 m model 4 error
relative to the distance of the putting error of 4 meters to a
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TABLE 3. Comparison of measurement values of road width of sections.

few bigger, but for driverless cars in the actual test, the error
of 0.1 meters of the unmanned vehicle road test is within the
acceptable range.

D. SLAM ALGORITHM COMPARISON EXPERIMENTS
In order to verify the performance of the overall mapping
scheme in this paper, this section compares the effect of com-
mon SLAM algorithms in the campus dataset. The campus
dataset is as follows: collect a trajectory map with a length of
about 1940m as shown in Figure 22, where the black origin
is the starting point, drive along the red route until passing
the starting point for the second time, and the green circle
represents the ending point. Assuming the starting point is
m, and m is also the first loop closure point. This paper
mainly compares LOAM, LEGO-LOAM and FAST-LIO2
algorithms. The running results of various algorithms are as
follows:

According to Table 4, during the operation of the algorithm
used in this article, the offset error is the average calculated
error of the error in each axis direction of the trajectory
point when the unmanned vehicle runs to 100m, 200m,
300m. . . 1800m. Using the dataset collected from the campus
to run all algorithms, the error of the proposed algorithm in
the X-axis and Y-axis direction is much smaller than other
algorithms. Compared with the elevation error, the proposed
algorithm has a higher error than LEGO-LOAM, but the
overall error is 0.453m, which is lower than the 8.54m error
value of LEGO-LOAM. For the LOAM algorithm and FAST-
LIO2 algorithm, due to the lack of a loop closure detection
module, the accumulated errors estimated by inertial sensors
and laser odometry can not be eliminated. This will result
in the final estimated trajectory errors reaching 4.106m and
4.382m. For the LEGO-LOAM algorithm, due to the use of a
loop closure detection module based on Euclidean distance,
it is ultimately unable to loop back correctly, resulting in an
estimated pose error of 8.54m.

TABLE 4. Comparison results of SLAM algorithm errors (m).

As shown in Figure 23, the trajectory diagrams of all
comparison algorithms and the algorithm in this paper are
presented. The RTK trajectory is used as the true reference
value, and the trajectory estimated by the algorithm in this
paper is roughly consistent with the RTK trajectory. The
trajectory estimated by other SLAM algorithms ultimately
failed to loop back successfully, and effective means were not
used to eliminate cumulative errors, resulting in errors in the
final estimated trajectory. Therefore, the overall comparison
shows that the algorithm proposed in this paper has higher
mapping performance compared to the classic open-source
laser SLAM algorithms.

IV. CONCLUSION
In this paper, a tightly-coupled laser SLAM integrating
LiDAR and INS is developed to solve the problems of low
location and mapping accuracy in large-scale environments
caused by the lack of information and poor robustness of a
single sensor for autonomous unmanned vehicles. Firstly,the
preprocessing and feature extraction methods of the 3D laser
point cloud are studied. To keep the shape characteristics
of the point cloud and reduce the noise of the point cloud,
the voxel grid method is used to filter the point cloud.
On the basis of point cloud segmentation, the roughness of
the point cloud is used as the benchmark to extract point
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cloud features, and plane features and edge features are
extracted, and the features are optimized. Secondly, the laser
SLAM algorithm based on point cloud registration is stud-
ied. On the basis of feature extraction, the characteristic
constraint equation of the inter-frame point cloud was con-
structed, and the pose solution result of the INS was added
as the prior data of inter-frame point cloud registration. The
levenberg-Marquardt nonlinear least square method was used
to solve the constraint equation to obtain the pose relation-
ship between inter-frames. The odometry was optimized by
map matching and loop closure detection. Finally, compared
the proposed SLAM algorithm with the classic open-source
SLAM algorithm by the campus dataset to verify the per-
formance of the overall mapping scheme. The experimental
results show that the trajectory error estimated by the pro-
posed SLAM algorithm is smaller than that estimated by
classic open-source SLAM algorithms. It has certain advan-
tages in estimating the motion trajectory error of unmanned
vehicles. The generated point cloud map can be further devel-
oped into a high-precision map for campus scene navigation
of unmanned vehicles.
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