001561443 000__ 08070nam\\22006013i\4500 001561443 001__ 1561443 001561443 003__ MiAaPQ 001561443 005__ 20241002095016.0 001561443 006__ m\\\\\o\\d\\\\\\\\ 001561443 007__ cr\cn\nnnunnun 001561443 008__ 240928s2020\\\\xx\\\\\\o\\\\\|||\0\eng\d 001561443 020__ $$a9780750320641 001561443 020__ $$z9780750320658 001561443 035__ $$a(MiAaPQ)EBC31253059 001561443 035__ $$a(Au-PeEL)EBL31253059 001561443 035__ $$a(OCoLC)1429723811 001561443 040__ $$aMiAaPQ$$beng$$erda$$epn$$cMiAaPQ$$dMiAaPQ 001561443 1001_ $$aChristini, David J. 001561443 24510 $$aModeling and Simulating Cardiac Electrical Activity. 001561443 250__ $$a1st ed. 001561443 264_1 $$aBristol :$$bInstitute of Physics Publishing,$$c2020. 001561443 264_4 $$c©2020. 001561443 300__ $$a1 online resource (235 pages). 001561443 336__ $$atext$$btxt$$2rdacontent 001561443 337__ $$acomputer$$bc$$2rdamedia 001561443 338__ $$aonline resource$$bcr$$2rdacarrier 001561443 4901_ $$aBiophysical Society-IOP Series 001561443 5050_ $$aIntro -- Preface -- Editor biographies -- Trine Krogh-Madsen -- David J Christini -- Contributors -- Chapter 1 Quantitative description of cardiac action potentials -- 1.1 Cardiac action potentials -- 1.1.1 Ionic gradients and action potential generation -- 1.1.2 Ventricular action potential -- 1.1.3 Sinoatrial node action potential -- 1.2 Modeling cardiac action potentials -- 1.2.1 Voltage clamp recordings -- 1.2.2 Gates and channels -- 1.2.3 Quantitative description of voltage clamp data -- 1.2.4 Example current models -- 1.2.5 Beyond the Hodgkin-Huxley formalism -- 1.2.6 Cardiac model development -- References -- Chapter 2 Modeling the molecular details of ion channels -- 2.1 Introduction -- 2.2 Lessons from Hodgkin and Huxley -- 2.3 Movement to Markov models -- 2.4 Inclusion of molecular level detail in Markov models -- 2.5 The power of molecular dynamics -- 2.6 MD simulations of ion channels -- 2.7 Intermediate modeling techniques -- 2.8 Concluding remarks -- References -- Chapter 3 Modeling cardiac calcium signaling, regulation, and control -- 3.1 Calcium in cardiac physiology -- 3.1.1 Fundamentals of cardiac ECC and Ca2+ homeostasis -- 3.1.2 The role of models in the study of cardiac Ca2+ signaling -- 3.2 Models of Ca2+ transport and Ca2+ binding -- 3.2.1 Models of cardiac Ca2+ channels -- 3.2.2 Models of cardiac Ca2+ pumps and exchangers -- 3.2.3 Cardiac Ca2+ buffers and cytosolic bulk transport -- 3.3 Multiscale cardiac ECC and Ca2+ homeostasis -- 3.3.1 Structural details and protein localization -- 3.3.2 Models of Ca2+ sparks, couplons, and local control -- 3.3.3 Spatial models of subcellular Ca2+ signaling -- 3.3.4 Zero-dimensional models of myocyte Ca2+ handling -- 3.3.5 Emergent instabilities in multiscale cardiac Ca2+ signaling -- 3.4 The future of models in cardiac Ca2+ signaling -- Acknowledgements -- References. 001561443 5058_ $$aChapter 4 Cardiac cell modeling -- 4.1 Introduction -- 4.2 Types of cardiac models -- 4.2.1 Hodgkin-Huxley type versus Markov type -- 4.2.2 Phenomenological models versus physiologically detailed models -- 4.2.3 Action potentials for different regions of the heart -- 4.2.4 Action potential across different species -- 4.3 Examples of cardiac models -- 4.3.1 The modified FitzHugh-Nagumo model -- 4.3.2 The Noble model -- 4.3.3 The Karma model -- 4.3.4 The Beeler-Rueter model -- 4.3.5 The Luo-Rudy model -- 4.3.6 The Fenton-Karma model -- 4.3.7 The ten Tusscher et al model -- 4.3.8 The O'Hara et al model -- 4.3.9 Some dynamics of cardiac models in 2D -- 4.4 Discussion -- List of video files -- Acknowledgements -- References -- Chapter 5 Modeling cardiomyocyte signaling pathways -- 5.1 Introduction to modeling of protein kinase signaling pathways -- 5.1.1 Biophysical representation of chemical reactions -- 5.1.2 Physical derivation of rate constants for biochemical reactions -- 5.2 Mathematical modeling of electrical signaling -- 5.3 Mathematical modeling of protein kinase signaling pathways -- 5.3.1 Dynamic models of CaMKII signaling -- 5.3.2 Dynamic models of the β1-adrenergic signaling pathway -- 5.3.3 Mathematical modeling of cross talk between PKA and CaMKII signaling pathways -- 5.4 Systems biology: the next frontier for mathematical modeling of cell signaling -- 5.5 Conclusions and future directions -- References -- Chapter 6 Modelling cardiomyocyte energetics -- 6.1 Introduction to cardiomyocyte energetics -- 6.2 Mathematical modelling of biochemical energetics -- 6.2.1 Modelling biochemical systems -- 6.2.2 Energy-based modelling of biochemical processes -- 6.2.3 Thermodynamics of ion movement -- 6.2.4 Bond graph formalism for biochemical energetics -- 6.3 Coupled reactions: thermodynamics of ATPases. 001561443 5058_ $$a6.3.1 Thermodynamic modelling of coupled enzyme cycles -- 6.3.2 ATP hydrolysis reaction: driving energetically unfavourable reactions -- 6.4 Modelling cardiomyocyte bioenergetics -- 6.4.1 SERCA -- 6.4.2 Na+/K+ ATPase -- 6.4.3 Force generation -- 6.4.4 Mitochondrial ATP generation -- 6.4.5 Coupling ATP supply and demand in the cardiomyocyte -- 6.4.6 Measuring and modelling mechano-energetics -- 6.5 Current research, controversies, and future directions -- 6.5.1 How is mitochondrial energy generation regulated? -- 6.5.2 Creatine kinase shuttle -- 6.5.3 Role of cellular architecture: spatial models of cardiomyocyte energetics -- 6.5.4 Multiscale modelling of cardiac mechano-energetics: from cell to organ -- References -- Chapter 7 Tissue and organ scale modeling: coupled cells, wave propagation, simulated arrhythmia -- 7.1 Overview -- 7.2 Tissue conductivity -- 7.3 Continuum representation -- 7.3.1 Homogenization -- 7.4 Governing equations -- 7.4.1 Bidomain equations -- 7.5 Action potential propagation -- 7.5.1 Safety factor -- 7.5.2 Liminal length -- 7.5.3 Propagation speed -- 7.6 Regional differences -- 7.6.1 Ventricles -- 7.6.2 Atria -- 7.6.3 Sinoatrial node -- 7.6.4 Atrioventricular node -- 7.6.5 His-Purkinje system -- 7.6.6 Coupling tissues -- 7.7 Arrhythmia -- 7.7.1 Initiating reentry -- 7.7.2 Macroreentry -- 7.7.3 Rotors -- 7.7.4 Fibrillation -- 7.8 Conclusion -- References -- Chapter 8 Clinical translation of patient-specific organ level cardiac models -- 8.1 Introduction -- 8.2 Current anatomy modelling workflows -- 8.2.1 Geometry -- 8.2.2 Scar and fibrosis -- 8.2.3 Mesh generation -- 8.2.4 Fibres -- 8.3 Current parameterization techniques for electrophysiology models -- 8.3.1 Electrophysiology models and data -- 8.3.2 Personalized ventricular models -- 8.3.3 Personalized atrial models -- 8.4 Universal coordinate systems. 001561443 5058_ $$a8.4.1 Universal ventricular coordinates -- 8.4.2 Universal atrial coordinates -- 8.5 Simulation costs -- 8.6 Scaling-up modelling pipelines -- 8.7 Future perspective -- 8.8 Conclusion -- References. 001561443 506__ $$aAccess limited to authorized users. 001561443 520__ $$aThis book provides a thorough introduction to the topic of mathematical modeling of electrical activity in the heart, from molecular details of ionic channel dynamics to clinically derived patient-specific models. 001561443 588__ $$aDescription based on publisher supplied metadata and other sources. 001561443 655_0 $$aElectronic books 001561443 7001_ $$aKrogh-Madsen, Trine. 001561443 7001_ $$aMangold, Kathryn. 001561443 7001_ $$aSilva, Jonathan. 001561443 7001_ $$aEdwards, Andrew. 001561443 7001_ $$aGrandi, Eleonora. 001561443 7001_ $$aCherry, Elizabeth. 001561443 7001_ $$aJi, Claire. 001561443 7001_ $$aFenton, H, Flavio. 001561443 7001_ $$aHund, Thomas J. 001561443 77608 $$iPrint version:$$aChristini, David J.$$tModeling and Simulating Cardiac Electrical Activity$$dBristol : Institute of Physics Publishing,c2020$$z9780750320658 001561443 830_0 $$aBiophysical Society-IOP Series 001561443 852__ $$bebk 001561443 85640 $$3ProQuest Ebook Central Academic Complete $$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=31253059$$zOnline Access 001561443 909CO $$ooai:library.usi.edu:1561443$$pGLOBAL_SET 001561443 980__ $$aBIB 001561443 980__ $$aEBOOK 001561443 982__ $$aEbook 001561443 983__ $$aOnline