Linked e-resources
Details
Table of Contents
Cover
Title page
Chapter 1. Introduction
Chapter 2. Cohomological Tensor Functors
2.1. The superlinear groups
2.2. The Duflo-Serganova functor
2.3. Cohomology functors
2.4. Support varieties and the kernel of
2.5. The tensor functor
2.6. The relation between ( ) and ( )
2.7. Hodge decomposition
2.8. The case >
1
2.9. Boundary maps
2.10. Highest weight modules
2.11. The Casimir
Chapter 3. The Main Theorem and its Proof
3.1. The language of Brundan and Stroppel
3.2. On segments, sectors and plots
3.3. Mixed tensors and ground states
3.4. Sign normalizations
3.5. The main theorem
3.6. Strategy of the proof
3.7. Modules of Loewy length 3
3.8. Inductive Control over
3.9. Moves
Chapter 4. Consequences of the Main Theorem
4.1. Tannaka Duals
4.2. Cohomology I
4.3. Cohomology II
4.4. Cohomology III
4.5. The forest formula
4.6. -module structure on the cohomology ^{∙}_{ _{ }}
4.7. Primitive elements of ^{∙}_{ _{ }}( (1))
4.8. Kac module of 1
4.9. Strict morphisms
4.10. The module (( )ⁿ)
4.11. The basic hook representations
Bibliography
Back Cover.
Title page
Chapter 1. Introduction
Chapter 2. Cohomological Tensor Functors
2.1. The superlinear groups
2.2. The Duflo-Serganova functor
2.3. Cohomology functors
2.4. Support varieties and the kernel of
2.5. The tensor functor
2.6. The relation between ( ) and ( )
2.7. Hodge decomposition
2.8. The case >
1
2.9. Boundary maps
2.10. Highest weight modules
2.11. The Casimir
Chapter 3. The Main Theorem and its Proof
3.1. The language of Brundan and Stroppel
3.2. On segments, sectors and plots
3.3. Mixed tensors and ground states
3.4. Sign normalizations
3.5. The main theorem
3.6. Strategy of the proof
3.7. Modules of Loewy length 3
3.8. Inductive Control over
3.9. Moves
Chapter 4. Consequences of the Main Theorem
4.1. Tannaka Duals
4.2. Cohomology I
4.3. Cohomology II
4.4. Cohomology III
4.5. The forest formula
4.6. -module structure on the cohomology ^{∙}_{ _{ }}
4.7. Primitive elements of ^{∙}_{ _{ }}( (1))
4.8. Kac module of 1
4.9. Strict morphisms
4.10. The module (( )ⁿ)
4.11. The basic hook representations
Bibliography
Back Cover.