Linked e-resources
Details
Table of Contents
Cover
Title page
List of Symbols
Chapter 1. Introduction
Chapter 2. Coprime Actions
2.1. Actions through characters
2.2. Involutions
2.3. Jumps and width
Chapter 3. Intense Automorphisms
3.1. Basic properties
3.2. The main question
3.3. The abelian case
Chapter 4. Intensity of Groups of Class 2
4.1. Small commutator subgroup
4.2. More general setting
4.3. The extraspecial case
Chapter 5. Intensity of Groups of Class 3
5.1. Low intensity
5.2. Intensity given the automorphism
5.3. Constructing intense automorphisms
Chapter 6. Some Structural Restrictions
6.1. Normal subgroups
6.2. About the third width
6.3. A bound on the width
Chapter 7. Higher Nilpotency Classes
7.1. Class 4 and intensity
7.2. Class 5 and intensity
Chapter 8. A Disparity between the Primes
8.1. Regularity
8.2. Rank
8.3. A sharper bound on the width
Chapter 9. The Special Case of 3-groups
9.1. The cubing map
9.2. A specific example
9.3. Structures on vector spaces
9.4. Structures and free groups
9.5. Extensions
9.6. Constructing automorphisms
9.7. Intensity
Chapter 10. Obelisks
10.1. Some properties
10.2. Power maps and commutators
10.3. Framed obelisks
10.4. Subgroups of obelisks
Chapter 11. The Most Intense Chapter
11.1. The even case
11.2. The odd case, part I
11.3. The odd case, part II
11.4. Proving the main theorems
Chapter 12. High Class Intensity
12.1. A special case
12.2. The last exotic case
12.3. Proving the main theorem
Chapter 13. Intense Automorphisms of Profinite Groups
13.1. Some background
13.2. Properties and intensity
13.3. Non-abelian groups, part I
13.4. Two infinite groups
13.5. Non-abelian groups, part II
13.6. Proving the main theorems and more
Bibliography
Index
Back Cover.
Title page
List of Symbols
Chapter 1. Introduction
Chapter 2. Coprime Actions
2.1. Actions through characters
2.2. Involutions
2.3. Jumps and width
Chapter 3. Intense Automorphisms
3.1. Basic properties
3.2. The main question
3.3. The abelian case
Chapter 4. Intensity of Groups of Class 2
4.1. Small commutator subgroup
4.2. More general setting
4.3. The extraspecial case
Chapter 5. Intensity of Groups of Class 3
5.1. Low intensity
5.2. Intensity given the automorphism
5.3. Constructing intense automorphisms
Chapter 6. Some Structural Restrictions
6.1. Normal subgroups
6.2. About the third width
6.3. A bound on the width
Chapter 7. Higher Nilpotency Classes
7.1. Class 4 and intensity
7.2. Class 5 and intensity
Chapter 8. A Disparity between the Primes
8.1. Regularity
8.2. Rank
8.3. A sharper bound on the width
Chapter 9. The Special Case of 3-groups
9.1. The cubing map
9.2. A specific example
9.3. Structures on vector spaces
9.4. Structures and free groups
9.5. Extensions
9.6. Constructing automorphisms
9.7. Intensity
Chapter 10. Obelisks
10.1. Some properties
10.2. Power maps and commutators
10.3. Framed obelisks
10.4. Subgroups of obelisks
Chapter 11. The Most Intense Chapter
11.1. The even case
11.2. The odd case, part I
11.3. The odd case, part II
11.4. Proving the main theorems
Chapter 12. High Class Intensity
12.1. A special case
12.2. The last exotic case
12.3. Proving the main theorem
Chapter 13. Intense Automorphisms of Profinite Groups
13.1. Some background
13.2. Properties and intensity
13.3. Non-abelian groups, part I
13.4. Two infinite groups
13.5. Non-abelian groups, part II
13.6. Proving the main theorems and more
Bibliography
Index
Back Cover.