Linked e-resources
Details
Table of Contents
Cover
Title page
Introduction
Acknowledgment
Chapter 1. Tits polygons
1.1. Basic definitions
1.2. Examples
1.3. Commutator relations
1.4. Opposite roots
1.5. Uniqueness
1.6. A bound on
Chapter 2. Tits hexagons
2.1. Cubic norm structures
2.2. Hexagons
2.3. Coordinates for Δ
2.4. Hexagons of polar type
2.5. The associated cubic norm structure
2.6. Automorphisms and classification
Chapter 3. Groups of relative rank 1
3.1. Descent
3.2. The subgraph Λ
3.3. The Galois involution
3.4. The Moufang set (Δ,⟨ ⟩)
3.5. The structure map
3.6. The generic case
3.7. A formula for
3.8. Arbitrary Galois groups
Chapter 4. Appendix by Holger P. Petersson
4.1. Cubic norm structures
4.2. The cubic norm structure ℋ( , )
4.3. Irreducibility of the structure group
Bibliography
Index
Back Cover.
Title page
Introduction
Acknowledgment
Chapter 1. Tits polygons
1.1. Basic definitions
1.2. Examples
1.3. Commutator relations
1.4. Opposite roots
1.5. Uniqueness
1.6. A bound on
Chapter 2. Tits hexagons
2.1. Cubic norm structures
2.2. Hexagons
2.3. Coordinates for Δ
2.4. Hexagons of polar type
2.5. The associated cubic norm structure
2.6. Automorphisms and classification
Chapter 3. Groups of relative rank 1
3.1. Descent
3.2. The subgraph Λ
3.3. The Galois involution
3.4. The Moufang set (Δ,⟨ ⟩)
3.5. The structure map
3.6. The generic case
3.7. A formula for
3.8. Arbitrary Galois groups
Chapter 4. Appendix by Holger P. Petersson
4.1. Cubic norm structures
4.2. The cubic norm structure ℋ( , )
4.3. Irreducibility of the structure group
Bibliography
Index
Back Cover.