Linked e-resources
Details
Table of Contents
Cover
Title page
Chapter 1. Introduction
Chapter 2. Symplectic flips
2.1. Symplectic mmp runnings
2.2. Runnings for toric manifolds
2.3. Runnings for polygon spaces
2.4. Runnings for moduli spaces of flat bundles
Chapter 3. Lagrangians associated to flips
3.1. Regular Lagrangians
3.2. Regular Lagrangians for toric manifolds
3.3. Regular Lagrangians for polygon spaces
3.4. Regular Lagrangians for moduli spaces of flat bundles
Chapter 4. Fukaya algebras
4.1. \ainfty algebras
4.2. Associahedra
4.3. Treed pseudoholomorphic disks
4.4. Transversality
4.5. Compactness
4.6. Composition maps
4.7. Divisor equation
4.8. Maurer-Cartan moduli space
Chapter 5. Homotopy invariance
5.1. \ainfty morphisms
5.2. Multiplihedra
5.3. Quilted pseudoholomorphic disks
5.4. Morphisms of Fukaya algebras
5.5. Homotopies
5.6. Stabilization
Chapter 6. Fukaya bimodules
6.1. \ainfty bimodules
6.2. Treed strips
6.3. Hamiltonian perturbations
6.4. Clean intersections
6.5. Morphisms
6.6. Homotopies
Chapter 7. Broken Fukaya algebras
7.1. Broken curves
7.2. Broken maps
7.3. Broken perturbations
7.4. Broken divisors
7.5. Reverse flips
Chapter 8. The break-up process
8.1. Varying the length
8.2. Breaking a symplectic manifold
8.3. Breaking perturbation data
8.4. Getting back together
8.5. The infinite length limit
8.6. Examples
Bibliography
Back Cover.
Title page
Chapter 1. Introduction
Chapter 2. Symplectic flips
2.1. Symplectic mmp runnings
2.2. Runnings for toric manifolds
2.3. Runnings for polygon spaces
2.4. Runnings for moduli spaces of flat bundles
Chapter 3. Lagrangians associated to flips
3.1. Regular Lagrangians
3.2. Regular Lagrangians for toric manifolds
3.3. Regular Lagrangians for polygon spaces
3.4. Regular Lagrangians for moduli spaces of flat bundles
Chapter 4. Fukaya algebras
4.1. \ainfty algebras
4.2. Associahedra
4.3. Treed pseudoholomorphic disks
4.4. Transversality
4.5. Compactness
4.6. Composition maps
4.7. Divisor equation
4.8. Maurer-Cartan moduli space
Chapter 5. Homotopy invariance
5.1. \ainfty morphisms
5.2. Multiplihedra
5.3. Quilted pseudoholomorphic disks
5.4. Morphisms of Fukaya algebras
5.5. Homotopies
5.6. Stabilization
Chapter 6. Fukaya bimodules
6.1. \ainfty bimodules
6.2. Treed strips
6.3. Hamiltonian perturbations
6.4. Clean intersections
6.5. Morphisms
6.6. Homotopies
Chapter 7. Broken Fukaya algebras
7.1. Broken curves
7.2. Broken maps
7.3. Broken perturbations
7.4. Broken divisors
7.5. Reverse flips
Chapter 8. The break-up process
8.1. Varying the length
8.2. Breaking a symplectic manifold
8.3. Breaking perturbation data
8.4. Getting back together
8.5. The infinite length limit
8.6. Examples
Bibliography
Back Cover.