Linked e-resources
Details
Table of Contents
Cover
Title page
Preface
Main results
Where to find a quantum invariant and a TQFT inside an ETQFT
Outline of the construction
Structure of the exposition
Chapter 1. Relative modular categories
1.1. Pivotal and ribbon linear categories
1.2. Group structures and ribbon graphs
1.3. Group actions and group realizations
1.4. Projective traces and ambidextrous objects
1.5. Relative pre-modular categories
1.6. Main definition
1.7. Relation with semisimple theory
Chapter 2. Admissible cobordisms
2.1. Group colorings
2.2. 2-Category of decorated cobordisms
2.3. 2-Category of admissible cobordisms
Chapter 3. Extension of Costantino-Geer-Patureau invariants
3.1. Projective and generic stabilizations
3.2. Costantino-Geer-Patureau invariants
3.3. Universal construction
3.4. Extended universal construction
Chapter 4. Combinatorial and topological properties
4.1. Skein equivalence
4.2. Surgery axioms
4.3. Connection, domination, triviality
Chapter 5. Graded extensions
5.1. 2-Spheres
5.2. 3-Discs
5.3. 3-Pants
5.4. Graded extended universal construction
Chapter 6. Symmetric monoidality
6.1. Graded ETQFT
6.2. Graded TQFT
Chapter 7. Characterization of the image
7.1. 1-Spheres
7.2. 2-Discs
7.3. 2-Pants
7.4. 2-Cylinders
7.5. Examples of computations
Appendix A. Unrolled quantum groups
A.1. Even roots of unity
A.2. Odd roots of unity
Appendix B. Manifolds and cobordisms with corners
B.1. Manifolds with corners
B.2. Collars
B.3. Gluing
B.4. Cobordisms with corners
Appendix C. Signature defects
C.1. Intersection pairings
C.2. Lagrangian subspaces
C.3. Maslov indices
Appendix D. Symmetric monoidal 2-categories
D.1. 2-Categories
D.2. Symmetric monoidal structures.
Appendix E. Complete linear and graded linear categories
E.1. Linear and graded linear categories
E.2. Complete linear categories
E.3. Complete graded linear categories
E.4. Proofs
Bibliography
Back Cover.
Title page
Preface
Main results
Where to find a quantum invariant and a TQFT inside an ETQFT
Outline of the construction
Structure of the exposition
Chapter 1. Relative modular categories
1.1. Pivotal and ribbon linear categories
1.2. Group structures and ribbon graphs
1.3. Group actions and group realizations
1.4. Projective traces and ambidextrous objects
1.5. Relative pre-modular categories
1.6. Main definition
1.7. Relation with semisimple theory
Chapter 2. Admissible cobordisms
2.1. Group colorings
2.2. 2-Category of decorated cobordisms
2.3. 2-Category of admissible cobordisms
Chapter 3. Extension of Costantino-Geer-Patureau invariants
3.1. Projective and generic stabilizations
3.2. Costantino-Geer-Patureau invariants
3.3. Universal construction
3.4. Extended universal construction
Chapter 4. Combinatorial and topological properties
4.1. Skein equivalence
4.2. Surgery axioms
4.3. Connection, domination, triviality
Chapter 5. Graded extensions
5.1. 2-Spheres
5.2. 3-Discs
5.3. 3-Pants
5.4. Graded extended universal construction
Chapter 6. Symmetric monoidality
6.1. Graded ETQFT
6.2. Graded TQFT
Chapter 7. Characterization of the image
7.1. 1-Spheres
7.2. 2-Discs
7.3. 2-Pants
7.4. 2-Cylinders
7.5. Examples of computations
Appendix A. Unrolled quantum groups
A.1. Even roots of unity
A.2. Odd roots of unity
Appendix B. Manifolds and cobordisms with corners
B.1. Manifolds with corners
B.2. Collars
B.3. Gluing
B.4. Cobordisms with corners
Appendix C. Signature defects
C.1. Intersection pairings
C.2. Lagrangian subspaces
C.3. Maslov indices
Appendix D. Symmetric monoidal 2-categories
D.1. 2-Categories
D.2. Symmetric monoidal structures.
Appendix E. Complete linear and graded linear categories
E.1. Linear and graded linear categories
E.2. Complete linear categories
E.3. Complete graded linear categories
E.4. Proofs
Bibliography
Back Cover.