Linked e-resources
Details
Table of Contents
Front Cover
Polymer Science and Innovative Applications
Copyright Page
Contents
List of contributors
1 Polymers to improve the world and lifestyle: physical, mechanical, and chemical needs
1.1 Introduction
1.2 Industrial revolutions and polymer applications
1.3 Polymers: general classification and production
1.3.1 Fabrication methods
1.3.2 Classification of polymers
1.3.2.1 Thermoplastics
1.3.2.2 Thermosets
1.3.2.3 Elastomers (rubbers)
1.4 Current lifestyle and the need of polymers
1.5 Polymers to composites
1.6 Specific requirements of polymers using physical, mechanical, and chemical methods
1.7 Internet of Things and smart materials
1.8 Conclusions
Acknowledgments
References
2 Morphology analysis
2.1 Introduction
2.2 Polymer morphology
2.2.1 Crystalline polymers
2.2.2 Amorphous polymers
2.2.3 Semicrystalline polymers
2.2.4 Polymer blends
2.2.5 Polymer composites
2.3 Characterization methods
2.3.1 Indirect observation methods
2.3.1.1 X-ray diffraction
2.3.1.2 Small angle light scattering
2.3.1.3 Small angle X-ray scattering
2.3.1.4 Differential scanning calorimetry
2.3.1.5 Dynamic mechanical analysis
2.3.2 Direct observation methods
2.3.2.1 Optical microscopy
2.3.2.2 Scanning electron microscopy
2.3.2.3 Transmission electron microscopy
2.3.2.4 Scanning tunneling microscopy
2.3.2.5 Atomic force microscopy
2.4 Applications
2.5 Conclusion
Acknowledgments
References
3 Chemical analysis of polymers
3.1 Introduction
3.2 Molecular weight determination
3.2.1 Determination of molecular weight by end group analysis
3.2.1.1 Chemical analysis of amine, carboxyl and hydroxyl groups
3.2.2 Determination of number average molecular weight by end group analysis
3.3 Infrared spectroscopy.
3.3.1 Infrared analysis of saturated polymers
3.3.2 Infrared analysis of polymers containing unsaturation
3.3.3 Infrared analysis of polymers containing aromatic group
3.3.4 Infrared analysis of polymers containing hydroxyl group
3.3.5 Infrared analysis of polymers containing ester group
3.3.6 Infrared analysis of polymers containing carboxylic acid group
3.3.7 Infrared analysis of polymers containing amide group
3.4 Nuclear magnetic resonance spectroscopy
3.4.1 Nuclear Zeeman splitting
3.4.2 Chemical shift
3.4.3 Spin-spin coupling
3.4.4 Analysis of end groups by 1H nuclear magnetic resonance spectroscopy
3.4.5 Determination of molecular weight by 1H nuclear magnetic resonance spectroscopy
3.4.6 Copolymer analysis by 1H nuclear magnetic resonance spectroscopy
3.5 Mass spectrometry
3.5.1 Electrospray ionization mass spectrometry
3.5.2 Matrix-assisted laser desorption/ionization mass spectrometry
3.5.3 Applications of electrospray ionization and matrix-assisted laser desorption/ionization spectrometry
3.6 Conclusion
Acknowledgments
References
4 Mechanical analysis of polymers
4.1 Introduction
4.2 Mechanical properties of polymers
4.2.1 Stress-strain behavior
4.2.2 Viscoelasticity
4.2.3 Time-temperature dependence
4.2.4 Tensile strength
4.2.5 Flexural modulus (modulus of elasticity)
4.2.6 Elongation at break
4.2.7 Crazing and shear yielding
4.2.8 Fracture and fracture mechanics
4.2.9 Coefficient of friction
4.2.10 Fatigue and fatigue crack propagation
4.2.11 Toughness
4.2.12 Abrasion resistance
4.3 Dynamic mechanical thermal analysis of polymers
4.4 Factors affecting the mechanical properties of polymers
4.4.1 Molecular weight
4.4.2 Degree of crystallinity
4.4.3 Temperature
4.4.4 Processing methods
4.5 Conclusion
References.
5 Physical and thermal analysis of polymer
5.1 Introduction
Techniques used for physical and thermal analysis of polymers
5.1.1 Infrared and Raman spectroscopy
5.1.1.1 Basic principle
5.1.1.2 Applications
5.1.2 Nuclear magnetic resonance spectroscopy
5.1.2.1 Basic principle
5.1.2.2 Applications
5.1.3 X-ray analysis
5.1.3.1 Basic principle
5.1.3.2 Applications
5.1.4 Scanning electron microscopy and transmission electron microscopy
5.1.4.1 Basic principle
5.1.4.2 Applications
5.1.5 Thermogravimetry and differential scanning calorimetry
5.1.5.1 Basic principle
5.1.5.2 Applications
5.1.5.2.1 Thermogravimetry applications
5.1.5.2.2 Differential thermal analysis and differential scanning calorimetry applications
5.1.6 Quantum chemical calculations
5.1.6.1 Basic principle
5.1.6.2 Applications
5.1.7 Gas permeation behavior
5.2 Conclusion
Acknowledgment
References
6 Theoretical simulation approaches to polymer research
6.1 Introduction
6.2 Methodologies and applications
6.2.1 Molecular dynamics simulations
6.2.2 Dissipative particle dynamics simulations
6.2.3 Molecular theory
6.3 Conclusion
References
7 An example of theoretical approaches in polymer hydrogels: insights into the behavior of pH-responsive nanofilms
7.1 Introduction
7.2 Acid-base equilibrium in dilute solutions: ideal behavior
7.3 Protonation of weak polyacid hydrogel films
7.3.1 Local pH
7.3.2 Displacement of chemical equilibrium: the role of salt concentration
7.4 Histidine-tag adsorption to pH-responsive hydrogels
7.4.1 Adsorption is a nonmonotonic function of pH
7.4.2 Adsorption can modify the pH inside the hydrogel
7.5 Adsorption of proteins to pH-sensitive hydrogels
7.5.1 Protein model and solution titration curves.
7.5.2 The role of pH and salt concentration in the magnitude of adsorption
7.5.3 Protein charge regulation
7.5.4 Protonation of amino acids after adsorption
7.5.5 Adsorption from binary protein mixtures
7.6 Conclusion
Acknowledgment
References
8 Pectin as oral colon-specific nano- and microparticulate drug carriers
8.1 Introduction
8.1.1 Synthetic polymers
8.1.2 Natural polymer
8.2 Pectin as bioactive dietary fiber
8.2.1 Prebiotic
8.2.2 Antibacterial
8.2.3 Antioxidant
8.2.4 Antidiabetic
8.2.5 Antitumor
8.3 Pectin-based oral drug delivery system
8.3.1 Tablet
8.3.2 Beads
8.3.3 Pellets
8.3.4 Nanoparticles
8.4 Oral colon-specific drug delivery mechanism
8.5 Conclusion
References
9 Starch as oral colon-specific nano- and microparticulate drug carriers
9.1 Introduction
9.2 Polysaccharides as anticancer drug carriers
9.3 Colon anatomy and physiology
9.4 Colon cancer
9.4.1 Colon cancer statistics
9.4.2 Treatment modes, their disadvantages, and limitations
9.5 Colon-specific drug delivery
9.6 Starch as a drug carrier
9.6.1 Physicochemical properties of starch
9.6.2 Resistant starch
9.6.3 Preparations of resistant starch
9.6.3.1 Acetylation
9.6.3.2 Acid hydrolysis
9.6.3.3 Amylose-lipid complexation
9.6.3.4 Crosslinking
9.6.3.5 Enzymatic debranching
9.6.3.6 Hydrothermal treatment
9.6.4 Pharmaceutical applications of starch
9.6.5 Starch as oral colon-specific drug carrier
9.6.5.1 Beads
9.6.5.2 Hydrogels
9.6.5.3 Microparticles
9.6.5.4 Nanoparticles
9.6.5.5 Pellets
9.7 Conclusion
Acknowledgment
References
10 Polymers in textiles
10.1 Introduction
10.2 Brief history of manmade fibers
10.3 Terminology and definitions
10.4 Fiber manufacturing
10.4.1 Melt spinning
10.4.2 Dry spinning.
10.4.3 Wet spinning
10.4.4 Gel spinning
10.4.5 Nonwovens processing
10.5 Characterization and testing of textile fibers
10.5.1 Density
10.5.2 Mechanical properties
10.5.2.1 Tenacity
10.5.2.2 Elongation to break
10.5.3 Fiber structure and morphology
10.5.4 Fiber identification
10.5.4.1 Microscopy test
10.5.4.2 Chemical test
10.5.4.3 Burn test
10.5.4.4 Density test
10.5.4.5 Stain test
10.5.5 Other characterization and identification techniques
10.6 Polymers in textiles: major manmade fibers
10.6.1 Polyester
10.6.1.1 Chemistry
10.6.1.2 Properties
10.6.1.3 Uses
10.6.2 Nylon
10.6.2.1 Chemistry
10.6.2.2 Properties
10.6.2.3 Uses
10.6.3 Acetate fiber
10.6.3.1 Chemistry
10.6.3.2 Properties
10.6.3.3 Uses
10.6.4 Acrylic fiber
10.6.4.1 Chemistry
10.6.4.2 Properties
10.6.4.3 Uses
10.6.5 Modacrylic fiber
10.6.5.1 Chemistry
10.6.5.2 Properties
10.6.5.3 Uses
10.6.6 Spandex fiber
10.6.6.1 Chemistry
10.6.6.2 Properties
10.6.6.3 Uses
10.6.7 High-performance fibers
10.6.7.1 Aramids (Nomex and Kevlar)
10.6.7.1.1 Chemistry
10.6.7.1.2 Properties
10.6.7.1.3 Uses
10.6.7.2 Ultrahigh molecular weight polyethylene
10.6.7.2.1 Chemistry
10.6.7.2.2 Properties
10.6.7.2.3 Uses
10.6.7.3 Carbon fiber
10.6.7.3.1 Chemistry
10.6.7.3.2 Properties
10.6.7.3.3 Uses
10.6.8 Polyolefins
10.6.8.1 Chemistry
10.6.8.2 Properties
10.6.8.3 Uses
10.7 Conclusion
References
11 Polymers in electronics
11.1 Introduction
11.2 Type of polymers
11.2.1 Conducting polymers
11.2.1.1 Traditional sequences of conducting polymer
11.2.1.2 Features of conducting polymers
11.2.1.3 Structure of conducting polymers
11.2.1.4 Advantages of conducting polymers
11.2.2 Semiconducting polymers
11.2.2.1 Filled polymers.
11.2.2.2 Ionic polymers or ionomers.
Polymer Science and Innovative Applications
Copyright Page
Contents
List of contributors
1 Polymers to improve the world and lifestyle: physical, mechanical, and chemical needs
1.1 Introduction
1.2 Industrial revolutions and polymer applications
1.3 Polymers: general classification and production
1.3.1 Fabrication methods
1.3.2 Classification of polymers
1.3.2.1 Thermoplastics
1.3.2.2 Thermosets
1.3.2.3 Elastomers (rubbers)
1.4 Current lifestyle and the need of polymers
1.5 Polymers to composites
1.6 Specific requirements of polymers using physical, mechanical, and chemical methods
1.7 Internet of Things and smart materials
1.8 Conclusions
Acknowledgments
References
2 Morphology analysis
2.1 Introduction
2.2 Polymer morphology
2.2.1 Crystalline polymers
2.2.2 Amorphous polymers
2.2.3 Semicrystalline polymers
2.2.4 Polymer blends
2.2.5 Polymer composites
2.3 Characterization methods
2.3.1 Indirect observation methods
2.3.1.1 X-ray diffraction
2.3.1.2 Small angle light scattering
2.3.1.3 Small angle X-ray scattering
2.3.1.4 Differential scanning calorimetry
2.3.1.5 Dynamic mechanical analysis
2.3.2 Direct observation methods
2.3.2.1 Optical microscopy
2.3.2.2 Scanning electron microscopy
2.3.2.3 Transmission electron microscopy
2.3.2.4 Scanning tunneling microscopy
2.3.2.5 Atomic force microscopy
2.4 Applications
2.5 Conclusion
Acknowledgments
References
3 Chemical analysis of polymers
3.1 Introduction
3.2 Molecular weight determination
3.2.1 Determination of molecular weight by end group analysis
3.2.1.1 Chemical analysis of amine, carboxyl and hydroxyl groups
3.2.2 Determination of number average molecular weight by end group analysis
3.3 Infrared spectroscopy.
3.3.1 Infrared analysis of saturated polymers
3.3.2 Infrared analysis of polymers containing unsaturation
3.3.3 Infrared analysis of polymers containing aromatic group
3.3.4 Infrared analysis of polymers containing hydroxyl group
3.3.5 Infrared analysis of polymers containing ester group
3.3.6 Infrared analysis of polymers containing carboxylic acid group
3.3.7 Infrared analysis of polymers containing amide group
3.4 Nuclear magnetic resonance spectroscopy
3.4.1 Nuclear Zeeman splitting
3.4.2 Chemical shift
3.4.3 Spin-spin coupling
3.4.4 Analysis of end groups by 1H nuclear magnetic resonance spectroscopy
3.4.5 Determination of molecular weight by 1H nuclear magnetic resonance spectroscopy
3.4.6 Copolymer analysis by 1H nuclear magnetic resonance spectroscopy
3.5 Mass spectrometry
3.5.1 Electrospray ionization mass spectrometry
3.5.2 Matrix-assisted laser desorption/ionization mass spectrometry
3.5.3 Applications of electrospray ionization and matrix-assisted laser desorption/ionization spectrometry
3.6 Conclusion
Acknowledgments
References
4 Mechanical analysis of polymers
4.1 Introduction
4.2 Mechanical properties of polymers
4.2.1 Stress-strain behavior
4.2.2 Viscoelasticity
4.2.3 Time-temperature dependence
4.2.4 Tensile strength
4.2.5 Flexural modulus (modulus of elasticity)
4.2.6 Elongation at break
4.2.7 Crazing and shear yielding
4.2.8 Fracture and fracture mechanics
4.2.9 Coefficient of friction
4.2.10 Fatigue and fatigue crack propagation
4.2.11 Toughness
4.2.12 Abrasion resistance
4.3 Dynamic mechanical thermal analysis of polymers
4.4 Factors affecting the mechanical properties of polymers
4.4.1 Molecular weight
4.4.2 Degree of crystallinity
4.4.3 Temperature
4.4.4 Processing methods
4.5 Conclusion
References.
5 Physical and thermal analysis of polymer
5.1 Introduction
Techniques used for physical and thermal analysis of polymers
5.1.1 Infrared and Raman spectroscopy
5.1.1.1 Basic principle
5.1.1.2 Applications
5.1.2 Nuclear magnetic resonance spectroscopy
5.1.2.1 Basic principle
5.1.2.2 Applications
5.1.3 X-ray analysis
5.1.3.1 Basic principle
5.1.3.2 Applications
5.1.4 Scanning electron microscopy and transmission electron microscopy
5.1.4.1 Basic principle
5.1.4.2 Applications
5.1.5 Thermogravimetry and differential scanning calorimetry
5.1.5.1 Basic principle
5.1.5.2 Applications
5.1.5.2.1 Thermogravimetry applications
5.1.5.2.2 Differential thermal analysis and differential scanning calorimetry applications
5.1.6 Quantum chemical calculations
5.1.6.1 Basic principle
5.1.6.2 Applications
5.1.7 Gas permeation behavior
5.2 Conclusion
Acknowledgment
References
6 Theoretical simulation approaches to polymer research
6.1 Introduction
6.2 Methodologies and applications
6.2.1 Molecular dynamics simulations
6.2.2 Dissipative particle dynamics simulations
6.2.3 Molecular theory
6.3 Conclusion
References
7 An example of theoretical approaches in polymer hydrogels: insights into the behavior of pH-responsive nanofilms
7.1 Introduction
7.2 Acid-base equilibrium in dilute solutions: ideal behavior
7.3 Protonation of weak polyacid hydrogel films
7.3.1 Local pH
7.3.2 Displacement of chemical equilibrium: the role of salt concentration
7.4 Histidine-tag adsorption to pH-responsive hydrogels
7.4.1 Adsorption is a nonmonotonic function of pH
7.4.2 Adsorption can modify the pH inside the hydrogel
7.5 Adsorption of proteins to pH-sensitive hydrogels
7.5.1 Protein model and solution titration curves.
7.5.2 The role of pH and salt concentration in the magnitude of adsorption
7.5.3 Protein charge regulation
7.5.4 Protonation of amino acids after adsorption
7.5.5 Adsorption from binary protein mixtures
7.6 Conclusion
Acknowledgment
References
8 Pectin as oral colon-specific nano- and microparticulate drug carriers
8.1 Introduction
8.1.1 Synthetic polymers
8.1.2 Natural polymer
8.2 Pectin as bioactive dietary fiber
8.2.1 Prebiotic
8.2.2 Antibacterial
8.2.3 Antioxidant
8.2.4 Antidiabetic
8.2.5 Antitumor
8.3 Pectin-based oral drug delivery system
8.3.1 Tablet
8.3.2 Beads
8.3.3 Pellets
8.3.4 Nanoparticles
8.4 Oral colon-specific drug delivery mechanism
8.5 Conclusion
References
9 Starch as oral colon-specific nano- and microparticulate drug carriers
9.1 Introduction
9.2 Polysaccharides as anticancer drug carriers
9.3 Colon anatomy and physiology
9.4 Colon cancer
9.4.1 Colon cancer statistics
9.4.2 Treatment modes, their disadvantages, and limitations
9.5 Colon-specific drug delivery
9.6 Starch as a drug carrier
9.6.1 Physicochemical properties of starch
9.6.2 Resistant starch
9.6.3 Preparations of resistant starch
9.6.3.1 Acetylation
9.6.3.2 Acid hydrolysis
9.6.3.3 Amylose-lipid complexation
9.6.3.4 Crosslinking
9.6.3.5 Enzymatic debranching
9.6.3.6 Hydrothermal treatment
9.6.4 Pharmaceutical applications of starch
9.6.5 Starch as oral colon-specific drug carrier
9.6.5.1 Beads
9.6.5.2 Hydrogels
9.6.5.3 Microparticles
9.6.5.4 Nanoparticles
9.6.5.5 Pellets
9.7 Conclusion
Acknowledgment
References
10 Polymers in textiles
10.1 Introduction
10.2 Brief history of manmade fibers
10.3 Terminology and definitions
10.4 Fiber manufacturing
10.4.1 Melt spinning
10.4.2 Dry spinning.
10.4.3 Wet spinning
10.4.4 Gel spinning
10.4.5 Nonwovens processing
10.5 Characterization and testing of textile fibers
10.5.1 Density
10.5.2 Mechanical properties
10.5.2.1 Tenacity
10.5.2.2 Elongation to break
10.5.3 Fiber structure and morphology
10.5.4 Fiber identification
10.5.4.1 Microscopy test
10.5.4.2 Chemical test
10.5.4.3 Burn test
10.5.4.4 Density test
10.5.4.5 Stain test
10.5.5 Other characterization and identification techniques
10.6 Polymers in textiles: major manmade fibers
10.6.1 Polyester
10.6.1.1 Chemistry
10.6.1.2 Properties
10.6.1.3 Uses
10.6.2 Nylon
10.6.2.1 Chemistry
10.6.2.2 Properties
10.6.2.3 Uses
10.6.3 Acetate fiber
10.6.3.1 Chemistry
10.6.3.2 Properties
10.6.3.3 Uses
10.6.4 Acrylic fiber
10.6.4.1 Chemistry
10.6.4.2 Properties
10.6.4.3 Uses
10.6.5 Modacrylic fiber
10.6.5.1 Chemistry
10.6.5.2 Properties
10.6.5.3 Uses
10.6.6 Spandex fiber
10.6.6.1 Chemistry
10.6.6.2 Properties
10.6.6.3 Uses
10.6.7 High-performance fibers
10.6.7.1 Aramids (Nomex and Kevlar)
10.6.7.1.1 Chemistry
10.6.7.1.2 Properties
10.6.7.1.3 Uses
10.6.7.2 Ultrahigh molecular weight polyethylene
10.6.7.2.1 Chemistry
10.6.7.2.2 Properties
10.6.7.2.3 Uses
10.6.7.3 Carbon fiber
10.6.7.3.1 Chemistry
10.6.7.3.2 Properties
10.6.7.3.3 Uses
10.6.8 Polyolefins
10.6.8.1 Chemistry
10.6.8.2 Properties
10.6.8.3 Uses
10.7 Conclusion
References
11 Polymers in electronics
11.1 Introduction
11.2 Type of polymers
11.2.1 Conducting polymers
11.2.1.1 Traditional sequences of conducting polymer
11.2.1.2 Features of conducting polymers
11.2.1.3 Structure of conducting polymers
11.2.1.4 Advantages of conducting polymers
11.2.2 Semiconducting polymers
11.2.2.1 Filled polymers.
11.2.2.2 Ionic polymers or ionomers.