Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Linked e-resources

Details

Intro
Photovoltaic Solar Energy Conversion: Technologies, Applications and Environmental Impacts
Copyright
Contents
Contributors
Chapter 1: Introduction
1.1. Introduction
1.1.1. Basic energy concepts
1.1.2. Energy economics
1.2. Global trend of energy supply and demand
1.2.1. Future energy outlook
1.2.1.1. Challenges
1.2.1.2. Opportunities
1.3. Overview of renewable energies
1.3.1. Global market for renewable energies
1.3.2. Solar energy
1.3.2.1. Properties of sunlight
1.3.2.2. Solar photovoltaic energy conversion technology
Photovoltaic effect
1.3.2.3. Development history of solar cells
First generation of PV cells
Second generation of PV cells
Third generation of PV cells
1.3.2.4. PV technology landscape
1.3.2.5. Global PV market and industry
1.4. Conclusions and goals of the book
References
Further reading
Chapter 2: Solar cell technologies
2.1. Introduction
2.2. Solar cell technologies
2.2.1. Crystalline silicon solar cells
2.2.1.1. Mono-Si solar cells
2.2.1.2. Poly-Si solar cells
2.2.2. Thin-film solar cells
2.2.2.1. Amorphous silicon solar cells
2.2.2.2. Cadmium telluride (CdTe) solar cells
2.2.2.3. Copper indium gallium selenide (CIGS) solar cells
2.2.3. Polymer solar cells
2.2.4. Organic solar cells
2.3. Recent advances in solar cells
2.3.1. Gallium arsenide
2.3.2. Dye-sensitized solar cells
2.3.3. Perovskite solar cells
2.4. Conclusion
References
Chapter 3: Solar PV module technologies
3.1. Introduction
3.2. PV module performance parameters
3.2.1. Crystalline silicon PV module
3.2.1.1. Types of crystalline PV modules
3.2.2. Thin-film PV modules
3.2.2.1. Types of thin-film PV modules
3.2.2.2. Advantages of thin-film modules
3.2.3. Concentrating PV modules.

3.2.3.1. High concentrator PV (HCPV) modules
3.2.3.2. Low concentrator PV (LCPV) modules
3.2.3.3. Compound parabolic concentrators (CPC)
3.3. Service life and reliability of PV modules
3.3.1. Common defects and faults in PV modules
3.3.1.1. Methods for defect and fault detection on PV systems
3.3.1.2. PV module durability, quality control, and service life prediction
3.4. PV module testing and standards
3.4.1. Indoor testing
3.4.2. Module power measurement
3.5. Novel PV module concepts
3.6. Conclusion
References
Chapter 4: Solar photovoltaic thermal (PVT) module technologies
4.1. Introduction
4.1.1. Working principle of PVT modules
4.1.2. Historical development of PVT modules
4.1.3. Flat-plate PVT modules
4.1.3.1. Water-based FP-PVT modules
4.1.3.2. Air-based FP-PVT modules
4.1.3.3. Bifluid-based FP-PVT modules
4.1.4. Concentrating PVT modules
4.1.4.1. CPVT modules integrated with PTCs
4.1.4.2. CPVT modules integrated with Fresnel lenses
4.1.4.3. CPVT modules integrated with CPCs
4.1.5. Innovative PVT modules
4.1.5.1. Heat pipe-based PVT modules (HP-PVT)
4.1.5.2. Refrigerant-based PVT modules (RB-PVT)
4.1.5.3. Thermoelectric-based PVT modules (TE-PVT)
4.1.5.4. PCM-based PVT modules (PCM-PVT)
4.1.5.5. Beam split PVT system (BSPVT)
4.2. Conclusion
Acknowledgment
References
Chapter 5: Solar PV systems design and monitoring
5.1. PV system components
5.1.1. PV modules
5.1.2. Power electronic components
5.1.3. Energy storage
5.1.4. Electrical and mechanical components
5.2. Types of PV systems
5.2.1. Grid-connected PV systems
5.2.2. Stand-alone PV systems
5.2.3. Hybrid PV systems
5.3. Design of PV systems
5.3.1. Grid-connected PV systems
5.3.2. Stand-alone PV systems
5.3.3. Hybrid PV systems.

5.4. Failures and faults of PV systems
5.5. PV monitoring system
5.5.1. Overview of PV monitoring systems
5.5.2. Sensors and measured parameters
5.5.3. Data acquisition system (DAS)
5.5.4. Data transmission methods
5.5.4.1. Wired communication
5.5.4.2. Wireless communication
5.5.4.3. Power line communication (PLC)
5.5.5. Data storage methods
5.5.6. Data analysis methods
5.5.6.1. Predictive monitoring
5.5.7. Perspectives and issues in PV monitoring systems
5.6. Environmental impacts on PV systems
5.6.1. Effect of temperature
5.6.2. Irradiation levels
5.6.3. Spectral effect
5.7. Performance assessment
5.7.1. Array, final, reference, and corrected reference yield
5.7.2. Efficiency indicators
5.7.3. Indicators for energy loss
5.7.4. Degradation and risk assessment
5.8. Conclusion
References
Chapter 6: On-farm applications of solar PV systems
6.1. Introduction
6.1.1. Agrophotovoltaic (APV)
6.1.2. Aquavoltaics
6.2. Applications of solar PV systems in agriculture
6.2.1. PV-powered solar water pumping systems
6.2.1.1. Developments and prospects
6.2.2. PV-powered desalination systems
6.2.3. Solar-powered dryers
6.2.3.1. PV-powered solar dryers
6.2.3.2. PVT-powered solar dryers
6.2.4. PV-powered livestock farming systems
6.2.4.1. PV applications in livestock farms
Lighting load
Ventilation
Livestock watering
Milk cooling and milking system
6.2.4.2. Utilization of PVT collectors in livestock
6.2.5. PV-powered solar greenhouses
6.2.5.1. PV-integrated solar greenhouses
6.2.5.2. PVT-integrated solar greenhouses
6.2.5.3. CPVT-integrated solar greenhouses
6.2.6. Solar-powered crop protection systems
6.2.6.1. Solar-powered fencing
6.2.6.2. Solar-powered bird repeller
6.2.6.3. Solar-powered light trap.

6.3. Conclusions and future prospects
Acknowledgment
References
Further reading
Chapter 7: Applications of solar PV systems in agricultural automation and robotics
7.1. Precision agriculture (PA)
7.1.1. Robotics and intelligent machines in agriculture
7.1.2. Autonomous navigation systems (ANSs)
7.1.3. Agricultural robots (ag-robots)
7.2. Utilization of PV systems in PA
7.2.1. Solar-powered ag-robots
7.2.1.1. Solar-powered robotics in agrophotovoltaics (APV)
7.3. Solar-powered electric tractors
7.3.1. Electrification of farm tractors
7.3.2. History of emerging electric drives in farm tractors
7.3.3. PV-integrated charging methods
7.3.4. Development of solar-powered farm vehicles
7.4. Solar-powered wireless sensor networks
7.4.1. Wireless communication technologies
7.4.2. Wireless sensor network (WSN)
7.4.3. Internet of things (IoT)
7.4.4. Energy harvesting techniques for WSNs
7.4.5. Applications of solar-powered WSNs in agriculture
7.5. Conclusion
Acknowledgment
References
Chapter 8: Applications of solar PV systems in desalination technologies
8.1. Introduction
8.2. Desalination and water security
8.3. Benefits and challenges of desalination
8.4. Conventional desalination technologies
8.5. Solar-powered desalination systems
8.5.1. PV-integrated solar desalination systems
8.5.1.1. PV-powered RO desalination systems
8.5.1.2. PV-powered ED desalination systems
8.5.1.3. PV-integrated membrane distillation (MD) systems
8.5.2. Solar distillation systems
8.5.2.1. Conventional solar stills
8.5.3. Integrated PV solar stills
8.5.3.1. PV-based mechanical power generation
Integrated PV-powered pump
Integrated PV-powered fan
Integrated PV-powered vacuum pump
Integrated PV-powered stirrer
Integrated PV-powered scraper.

Integrated PV-powered rotating bed
8.5.3.2. PV-based thermal power generation
Integrated PV-powered electric heater
8.5.4. PVT-integrated solar distillation systems
8.5.4.1. Integrated flat-plate PVT solar still
8.5.4.2. Integrated concentrating PVT (CPVT) solar stills
8.6. PV-powered desalination plants installed around the world
8.7. Challenges and prospects
Acknowledgment
References
Chapter 9: Applications of solar PV systems in hydrogen production
9.1. Introduction
9.2. Electrochemical hydrogen production
9.2.1. Alkali electrolysis
9.2.2. Polymer exchange membrane electrolysis
9.2.3. Solid oxide electrolysis
9.2.4. Anion exchange membrane electrolysis
9.2.5. Summary of the available technology
9.3. Solar syngas production
9.4. PV-based hydrogen production using electrolysis
9.4.1. Summary of the available PV-based hydrogen production plants
9.5. Conclusions
References
Chapter 10: Solar PV power plants
10.1. Introduction
10.2. Development
10.2.1. Solar resource assessment
10.2.2. Site selection and analysis
10.2.3. Environmental stress assessment
10.2.4. Predesign, optimization, and feasibility studies
10.2.5. Social consideration
10.3. Engineering, procurement, and construction
10.3.1. PV plant design
10.3.1.1. System layout
10.3.1.2. Choice of system components
10.3.1.3. Modules
10.3.1.4. Mounting structure
10.3.1.5. Inverters
10.3.1.6. Transformers
10.3.1.7. Balance of system equipment
PV combiner box
DC and AC switching
DC and AC main disconnect/isolator
Circuit breakers and fuses
Cabling
Voltage and current sizing
System protection
10.3.1.8. AC switchgear
10.3.1.9. Plant substation
10.3.1.10. Grounding and surge protection
10.3.2. Design process
10.3.2.1. Sample design.

10.3.3. Yield prediction.

Browse Subjects

Show more subjects...

Statistics

from
to
Export