Linked e-resources
Details
Table of Contents
Intro
Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioa ...
Copyright
Dedication
Contents
Contributors
Foreword by Michael A. Borowitzka
Part 1: Fundamentals
Chapter 1: Microalgae biotechnology: A brief introduction
1.1. Introduction
1.2. A brief history of everything
1.3. Algae as human food
1.3.1. Microalgae and seafood
1.4. Nitrogen for sustainable agriculture
1.5. Potential biofuels and other organic chemicals
1.6. Carbon sequestration by microalgae
1.7. Algae-based treatment of wastewaters
1.8. Harmful algae
1.9. Commercial production and processing of microalgal biomass
1.10. Concluding remarks
References
Chapter 2: Morphophysiological, structural, and metabolic aspects of microalgae
2.1. Introduction
2.2. Morphological aspects of microalgae
2.3. Cell ultrastructure of microalgae
2.3.1. Prokaryotic cells
2.3.2. Eukaryotic cells
2.4. General considerations on microalgae
2.4.1. Prokaryotic microalgae (cyanobacteria)
2.4.2. Eukaryotic microalgae
2.4.2.1. The green algae (Chlorophyta/Charophyta)
2.4.2.2. Euglenophyta
2.4.2.3. Haptophyta
2.4.2.4. Dinoflagellates (Dinophyceae)
2.4.2.5. The diatoms (Bacillariophyceae)
2.4.2.6. Eustigmatophyceae
2.4.2.7. The red algae (Rhodophyta)
2.5. Metabolic aspects of microalgae
2.5.1. Photosynthetic metabolism
2.5.1.1. Photosynthetic pigments
2.5.1.1.1. Chlorophyll
2.5.1.1.2. Carotenoids
2.5.1.1.3. Phycobiliproteins
2.5.1.2. Photosynthesis
2.5.1.3. Respiration
2.5.1.4. Nitrogen fixation
2.6. Concluding remarks
References
Chapter 3: Microalgae culture collections, strain maintenance, and propagation
3.1. Living biological collections
3.2. The operation of microalgae culture collections.
3.2.1. Basic laboratory infrastructure
3.2.2. Identification of cultures
3.2.3. Propagation of cultures
3.2.4. Conditions of keeping microalgae in culture collections
3.2.5. Strain quality control and routine problems
3.2.6. Cryopreservation of microalgae in culture collections
3.2.7. Microalgae as models of organisms in genomics, proteomics, and GMO studies-The role of culture collections
3.3. Some microalgae culture collections across the world
3.4. Concluding remarks
References
Chapter 4: Synthetic biology applied to microalgae-based processes and products
4.1. Introduction
4.1.1. Aspects of synthetic biology
4.2. Feasibility of microalgae for synthetic biology to produce various products
4.2.1. Biofuels
4.2.2. Various other bioactive products
4.3. Challenges to developing microalgae as a chassis for synthetic biology
4.4. Future perspective
4.5. Conclusion
Acknowledgments
References
Part 2: Microalgae-based processes
Chapter 5: Photobioreactor design
5.1. Chemical reactors versus photobioreactors
5.1.1. The chemical reactor
5.1.2. The photobioreactor
5.2. Kinetics of photo-biosynthesis
5.2.1. P-I charts
5.2.2. Other kinetic models
5.2.3. PSF
5.3. Fluid dynamics relevance
5.3.1. The effects of fluid dynamics on photosynthesis
5.3.2. Photosynthesis and ordered mixing
5.4. Ingenuity and inventiveness
5.5. Advanced models
5.6. Conclusions
Acknowledgment
References
Chapter 6: Microalgae production systems
6.1. Introduction
6.2. Major factors on microalgae production
6.2.1. Microalgae requirements
6.2.1.1. Light
6.2.1.2. Temperature
6.2.1.3. pH/CO2
6.2.1.4. Dissolved oxygen
6.2.1.5. Overall growth model
6.2.2. Photobioreactor capacity
6.2.2.1. Geometry
6.2.2.2. Fluid-dynamic
6.2.2.3. Mass transfer.
6.2.2.4. Heat transfer
6.3. Photobioreactor types
6.3.1. Raceway reactors
6.3.2. Tubular reactors
6.3.3. Other designs
6.3.3.1. Flat panels
6.3.4. Thin-layer reactors
6.4. Future trends
References
Chapter 7: Wastewater treatment based in microalgae
7.1. Introduction
7.2. Wastewater treatment
7.3. Microalgae for WW treatment
7.3.1. Removal of nitrogen and phosphorus
7.3.2. Heavy metal removal
7.3.3. Elimination of colorants
7.3.4. Elimination of emerging pollutants
7.4. Conclusion
References
Chapter 8: Carbon dioxide capture and utilization using microalgae
8.1. Introduction
8.2. Photosynthesis and carbon dioxide fixation by microalgae
8.2.1. The light reactions of photosynthesis
8.2.2. CO2 fixation: The Calvin-Benson cycle and the CO2 concentrating mechanism
8.3. Cultivation systems for CO2 capture using microalgae
8.3.1. CO2 sources and physicochemical properties
8.3.2. Strains
8.3.3. Physicochemical aspects involved in CO2 capture by microalgae
8.3.3.1. Light and nutrients
8.3.3.2. Temperature
8.3.3.3. pH
8.3.3.4. Mixing
8.3.4. Culture systems for CO2 capture with microalgae
8.3.5. Carbon balances for evaluation of microalgae-based CO2 capture systems
8.3.5.1. Gaseous carbon
8.3.5.2. Dissolved carbon
8.3.5.3. Carbon in biomass
8.4. Strategies for CO2 capture improvement
8.4.1. Genetic engineering and metabolic modifications for the improvement of CO2 capture
8.4.2. Photobioreactors: Enhancing design for CO2 capture improvement
8.4.2.1. Increasing mass transfer and reactor configurations
8.4.2.1.1. Manipulation of bubble dynamics
8.4.2.1.2. Modifying the liquid medium: Alkalinization and addition of adsorbent/absorbent materials
8.4.2.1.3. Built-in materials for photobioreactors
8.4.2.1.4. Hybrid photobioreactors.
8.4.2.1.5. Other bioreactor configurations
8.5. Remarks and conclusion
Acknowledgments
References
Chapter 9: Dewatering and drying of algal cultures
9.1. Introduction
9.2. Historic timeline of algal biomass production
9.3. Conventional dewatering methods of algae processing
9.3.1. Flocculation
9.3.2. Centrifugation
9.3.3. Filtration
9.3.4. Gravity sedimentation
9.3.5. Flotation
9.3.6. Electrophoresis methods
9.4. Conventional drying methods for algae processing
9.4.1. Solar drying
9.4.2. Convective drying
9.4.3. Spray-drying
9.4.4. Freeze-drying
9.4.5. Other drying methods
9.5. Latest trends in dewatering and drying of algae for commercialization
9.6. Future perspective
9.7. Conclusion
References
Chapter 10: Microalgae harvesting techniques
10.1. Introduction
10.2. Challenges in microalgal biomass harvesting
10.3. Effective harvesting techniques for microalgal biomass recovery
10.4. Harvesting methods
10.4.1. Gravity sedimentation
10.4.2. Flocculation
10.4.2.1. Autoflocculation
10.4.2.2. Chemical flocculation
10.4.2.3. Bioflocculation
10.4.2.4. Physical flocculation
10.4.3. Flotation
10.4.3.1. Dissolved air flotation
10.4.3.2. Dispersed air flotation
10.4.3.3. Electrolytic flotation
10.4.3.4. Dispersed ozone flotation
10.4.4. Centrifugation
10.4.5. Filtration methods
10.5. Selection of the most appropriate harvesting technique
10.6. Research needs
10.7. Conclusions
Acknowledgments
References
Chapter 11: Extraction of biomolecules from microalgae
11.1. Introduction
11.2. Extraction approaches for carotenoids
11.2.1. Cell disruption
11.2.1.1. Mechanical methods
11.2.1.1.1. Bead milling
11.2.1.1.2. High-pressure homogenization
11.2.1.1.3. Ultrasonication
11.2.1.1.4. Microwave.
11.2.1.2. Nonmechanical disruption methods
11.2.1.2.1. Acid, alkali, osmotic shock, and ionic liquids
11.2.1.2.2. Enzyme-based approaches
11.2.2. Extraction methods
11.2.2.1. Organic solvent extraction
11.2.2.2. Supercritical fluid extraction
11.2.3. Purification
11.3. Biofuels production
11.3.1. Biodiesel
11.3.1.1. Lipid extraction
11.3.1.1.1. Organic solvent
11.3.1.1.2. Ionic liquids
11.3.1.1.3. Supercritical fluid extraction
11.3.1.2. Transesterification
11.3.2. Bioethanol
11.3.2.1. Pretreatment
11.3.2.2. Hydrolysis and fermentation
11.3.3. Bio-crude oil
11.3.3.1. Pyrolysis
11.3.3.2. HTL
11.4. Future perspectives and conclusions
Acknowledgment
References
Part 3: Microalgae-based products
Chapter 12: Biogas from microalgae
12.1. Introduction
12.2. Anaerobic digestion of microalgae
12.3. Bacteria and archaea in the AD of microalgae
12.4. Main drawbacks affecting AD of microalgae
12.4.1. Complex cell walls
12.4.2. Low C/N ratios
12.4.3. Humidity of microalgal biomass
12.4.4. Salinity
12.5. AD of spent microalgae
12.6. Nutrient and CO2 recycling: Toward a sustainable closed loop
12.7. Biorefinery concept
12.8. Conclusions
References
Chapter 13: Biodiesel from microalgae
13.1. Introduction
13.2. Strains of microalgae for biodiesel production
13.2.1. Lipid-rich microalgae as a biodiesel feedstock
13.2.2. Cultivation of high lipid bearing microalgae
13.2.3. Process parameters affecting microalgae cultivation
13.2.4. Practical techniques for stimulating lipid production in microalgae
13.2.4.1. Nutrient starvation
13.2.4.2. Temperature stress
13.2.4.3. Salinity induction
13.2.4.4. Stress of pH
13.2.4.5. Stress of heavy metals
13.2.4.6. Light irradiation stress
13.2.4.7. UV irradiance.
13.2.5. Genetically engineered strains of microalgae for biodiesel production.
Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioa ...
Copyright
Dedication
Contents
Contributors
Foreword by Michael A. Borowitzka
Part 1: Fundamentals
Chapter 1: Microalgae biotechnology: A brief introduction
1.1. Introduction
1.2. A brief history of everything
1.3. Algae as human food
1.3.1. Microalgae and seafood
1.4. Nitrogen for sustainable agriculture
1.5. Potential biofuels and other organic chemicals
1.6. Carbon sequestration by microalgae
1.7. Algae-based treatment of wastewaters
1.8. Harmful algae
1.9. Commercial production and processing of microalgal biomass
1.10. Concluding remarks
References
Chapter 2: Morphophysiological, structural, and metabolic aspects of microalgae
2.1. Introduction
2.2. Morphological aspects of microalgae
2.3. Cell ultrastructure of microalgae
2.3.1. Prokaryotic cells
2.3.2. Eukaryotic cells
2.4. General considerations on microalgae
2.4.1. Prokaryotic microalgae (cyanobacteria)
2.4.2. Eukaryotic microalgae
2.4.2.1. The green algae (Chlorophyta/Charophyta)
2.4.2.2. Euglenophyta
2.4.2.3. Haptophyta
2.4.2.4. Dinoflagellates (Dinophyceae)
2.4.2.5. The diatoms (Bacillariophyceae)
2.4.2.6. Eustigmatophyceae
2.4.2.7. The red algae (Rhodophyta)
2.5. Metabolic aspects of microalgae
2.5.1. Photosynthetic metabolism
2.5.1.1. Photosynthetic pigments
2.5.1.1.1. Chlorophyll
2.5.1.1.2. Carotenoids
2.5.1.1.3. Phycobiliproteins
2.5.1.2. Photosynthesis
2.5.1.3. Respiration
2.5.1.4. Nitrogen fixation
2.6. Concluding remarks
References
Chapter 3: Microalgae culture collections, strain maintenance, and propagation
3.1. Living biological collections
3.2. The operation of microalgae culture collections.
3.2.1. Basic laboratory infrastructure
3.2.2. Identification of cultures
3.2.3. Propagation of cultures
3.2.4. Conditions of keeping microalgae in culture collections
3.2.5. Strain quality control and routine problems
3.2.6. Cryopreservation of microalgae in culture collections
3.2.7. Microalgae as models of organisms in genomics, proteomics, and GMO studies-The role of culture collections
3.3. Some microalgae culture collections across the world
3.4. Concluding remarks
References
Chapter 4: Synthetic biology applied to microalgae-based processes and products
4.1. Introduction
4.1.1. Aspects of synthetic biology
4.2. Feasibility of microalgae for synthetic biology to produce various products
4.2.1. Biofuels
4.2.2. Various other bioactive products
4.3. Challenges to developing microalgae as a chassis for synthetic biology
4.4. Future perspective
4.5. Conclusion
Acknowledgments
References
Part 2: Microalgae-based processes
Chapter 5: Photobioreactor design
5.1. Chemical reactors versus photobioreactors
5.1.1. The chemical reactor
5.1.2. The photobioreactor
5.2. Kinetics of photo-biosynthesis
5.2.1. P-I charts
5.2.2. Other kinetic models
5.2.3. PSF
5.3. Fluid dynamics relevance
5.3.1. The effects of fluid dynamics on photosynthesis
5.3.2. Photosynthesis and ordered mixing
5.4. Ingenuity and inventiveness
5.5. Advanced models
5.6. Conclusions
Acknowledgment
References
Chapter 6: Microalgae production systems
6.1. Introduction
6.2. Major factors on microalgae production
6.2.1. Microalgae requirements
6.2.1.1. Light
6.2.1.2. Temperature
6.2.1.3. pH/CO2
6.2.1.4. Dissolved oxygen
6.2.1.5. Overall growth model
6.2.2. Photobioreactor capacity
6.2.2.1. Geometry
6.2.2.2. Fluid-dynamic
6.2.2.3. Mass transfer.
6.2.2.4. Heat transfer
6.3. Photobioreactor types
6.3.1. Raceway reactors
6.3.2. Tubular reactors
6.3.3. Other designs
6.3.3.1. Flat panels
6.3.4. Thin-layer reactors
6.4. Future trends
References
Chapter 7: Wastewater treatment based in microalgae
7.1. Introduction
7.2. Wastewater treatment
7.3. Microalgae for WW treatment
7.3.1. Removal of nitrogen and phosphorus
7.3.2. Heavy metal removal
7.3.3. Elimination of colorants
7.3.4. Elimination of emerging pollutants
7.4. Conclusion
References
Chapter 8: Carbon dioxide capture and utilization using microalgae
8.1. Introduction
8.2. Photosynthesis and carbon dioxide fixation by microalgae
8.2.1. The light reactions of photosynthesis
8.2.2. CO2 fixation: The Calvin-Benson cycle and the CO2 concentrating mechanism
8.3. Cultivation systems for CO2 capture using microalgae
8.3.1. CO2 sources and physicochemical properties
8.3.2. Strains
8.3.3. Physicochemical aspects involved in CO2 capture by microalgae
8.3.3.1. Light and nutrients
8.3.3.2. Temperature
8.3.3.3. pH
8.3.3.4. Mixing
8.3.4. Culture systems for CO2 capture with microalgae
8.3.5. Carbon balances for evaluation of microalgae-based CO2 capture systems
8.3.5.1. Gaseous carbon
8.3.5.2. Dissolved carbon
8.3.5.3. Carbon in biomass
8.4. Strategies for CO2 capture improvement
8.4.1. Genetic engineering and metabolic modifications for the improvement of CO2 capture
8.4.2. Photobioreactors: Enhancing design for CO2 capture improvement
8.4.2.1. Increasing mass transfer and reactor configurations
8.4.2.1.1. Manipulation of bubble dynamics
8.4.2.1.2. Modifying the liquid medium: Alkalinization and addition of adsorbent/absorbent materials
8.4.2.1.3. Built-in materials for photobioreactors
8.4.2.1.4. Hybrid photobioreactors.
8.4.2.1.5. Other bioreactor configurations
8.5. Remarks and conclusion
Acknowledgments
References
Chapter 9: Dewatering and drying of algal cultures
9.1. Introduction
9.2. Historic timeline of algal biomass production
9.3. Conventional dewatering methods of algae processing
9.3.1. Flocculation
9.3.2. Centrifugation
9.3.3. Filtration
9.3.4. Gravity sedimentation
9.3.5. Flotation
9.3.6. Electrophoresis methods
9.4. Conventional drying methods for algae processing
9.4.1. Solar drying
9.4.2. Convective drying
9.4.3. Spray-drying
9.4.4. Freeze-drying
9.4.5. Other drying methods
9.5. Latest trends in dewatering and drying of algae for commercialization
9.6. Future perspective
9.7. Conclusion
References
Chapter 10: Microalgae harvesting techniques
10.1. Introduction
10.2. Challenges in microalgal biomass harvesting
10.3. Effective harvesting techniques for microalgal biomass recovery
10.4. Harvesting methods
10.4.1. Gravity sedimentation
10.4.2. Flocculation
10.4.2.1. Autoflocculation
10.4.2.2. Chemical flocculation
10.4.2.3. Bioflocculation
10.4.2.4. Physical flocculation
10.4.3. Flotation
10.4.3.1. Dissolved air flotation
10.4.3.2. Dispersed air flotation
10.4.3.3. Electrolytic flotation
10.4.3.4. Dispersed ozone flotation
10.4.4. Centrifugation
10.4.5. Filtration methods
10.5. Selection of the most appropriate harvesting technique
10.6. Research needs
10.7. Conclusions
Acknowledgments
References
Chapter 11: Extraction of biomolecules from microalgae
11.1. Introduction
11.2. Extraction approaches for carotenoids
11.2.1. Cell disruption
11.2.1.1. Mechanical methods
11.2.1.1.1. Bead milling
11.2.1.1.2. High-pressure homogenization
11.2.1.1.3. Ultrasonication
11.2.1.1.4. Microwave.
11.2.1.2. Nonmechanical disruption methods
11.2.1.2.1. Acid, alkali, osmotic shock, and ionic liquids
11.2.1.2.2. Enzyme-based approaches
11.2.2. Extraction methods
11.2.2.1. Organic solvent extraction
11.2.2.2. Supercritical fluid extraction
11.2.3. Purification
11.3. Biofuels production
11.3.1. Biodiesel
11.3.1.1. Lipid extraction
11.3.1.1.1. Organic solvent
11.3.1.1.2. Ionic liquids
11.3.1.1.3. Supercritical fluid extraction
11.3.1.2. Transesterification
11.3.2. Bioethanol
11.3.2.1. Pretreatment
11.3.2.2. Hydrolysis and fermentation
11.3.3. Bio-crude oil
11.3.3.1. Pyrolysis
11.3.3.2. HTL
11.4. Future perspectives and conclusions
Acknowledgment
References
Part 3: Microalgae-based products
Chapter 12: Biogas from microalgae
12.1. Introduction
12.2. Anaerobic digestion of microalgae
12.3. Bacteria and archaea in the AD of microalgae
12.4. Main drawbacks affecting AD of microalgae
12.4.1. Complex cell walls
12.4.2. Low C/N ratios
12.4.3. Humidity of microalgal biomass
12.4.4. Salinity
12.5. AD of spent microalgae
12.6. Nutrient and CO2 recycling: Toward a sustainable closed loop
12.7. Biorefinery concept
12.8. Conclusions
References
Chapter 13: Biodiesel from microalgae
13.1. Introduction
13.2. Strains of microalgae for biodiesel production
13.2.1. Lipid-rich microalgae as a biodiesel feedstock
13.2.2. Cultivation of high lipid bearing microalgae
13.2.3. Process parameters affecting microalgae cultivation
13.2.4. Practical techniques for stimulating lipid production in microalgae
13.2.4.1. Nutrient starvation
13.2.4.2. Temperature stress
13.2.4.3. Salinity induction
13.2.4.4. Stress of pH
13.2.4.5. Stress of heavy metals
13.2.4.6. Light irradiation stress
13.2.4.7. UV irradiance.
13.2.5. Genetically engineered strains of microalgae for biodiesel production.