Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Linked e-resources
Details
Table of Contents
Intro
Advances in Carbon Capture: Methods, Technologies and Applications
Copyright
Contents
Contributors
Editors biography
Section I: Introduction to CO2 capture
Chapter 1: CO2 emission sources, greenhouse gases, and the global warming effect
1.1. Introduction
1.2. Major greenhouse gases and their forms of emission
1.2.1. CH4 emission
1.2.2. N2O emission
1.2.3. CO2 emission
1.2.4. SO2 emission
1.3. Greenhouse gases and the greenhouse effect
1.4. CO2 as a major contributor to global warming and climate change
1.5. Current CO2 emission trends
1.6. Mitigation of CO2 emission in the industries
1.6.1. Power generation
1.6.2. Cement industry
1.6.3. Petrochemical plants
1.6.4. Iron and steel industry
1.7. International treaties and limitations on the reduction of CO2 emission
1.8. Future prospects of heat and mass integration during CO2 separation
1.9. Conclusions and future outlook
References
Chapter 2: Challenges on CO2 capture, utilization, and conversion
2.1. Introduction
2.2. The CO2 economy and the environmental effect of CCS technologies
2.2.1. Current scenario
2.2.2. The advantages and challenges of carbon utilization
2.3. CCS: Carbon dioxide capture technology (CCS), an overview
2.3.1. Absorption
2.3.2. Adsorption
2.3.3. Membrane separation: Membranes are relatively novel
2.3.4. Chemical looping cycle
2.3.5. Microalgae
2.3.6. Cryogenic CO2 capture
2.3.7. Cryogenic packed beds
2.3.8. External cooling loop cryogenic carbon capture
2.3.9. Antisublimation process
2.3.10. Cryogenic distillation
2.3.11. CryoCell process
2.3.12. Stirling cooler system
2.4. Carbon dioxide utilization technology (CCU)
2.4.1. Physical CO2 utilization
2.4.2. Chemical CO2 utilization.
2.4.3. Polymers and fine chemicals from carbon dioxide
2.4.4. Biochemical carbon dioxide utilization
2.4.5. Electrochemical utilization of CO2
2.4.6. New paradigms in CO2 utilization processes
2.5. CCS versus carbon capture and utilization (CCU)
2.6. Conclusions and future outlook
References
Section II: Absorption techniques and methods for CO2 capture
Chapter 3: CO2 absorption by common solvents
3.1. Introduction
3.2. Carbon capture technologies
3.2.1. Postcombustion capture
3.2.2. Precombustion capture
3.2.3. Oxy-fuel combustion
3.3. Industrial applications of CO2 capture
3.4. Different solvent for CO2 capture
3.4.1. Chemical solvents
3.4.2. Physical solvents
3.4.3. Hybrid solvents
3.5. Analysis of CO2 solubility data
3.5.1. Effect of pressure on the solubility of CO2
3.5.2. Effect of temperature on the solubility of CO2
3.5.3. Effect of hybrid solvent on the solubility of CO2
3.6. CO2 absorption reaction kinetics
3.6.1. Zwitterion mechanism
3.6.2. Termolecular mechanism
3.6.3. Base-catalyzed hydration mechanism
3.7. Mass transfer
3.8. Regeneration of amines
3.9. Degradation of amines
3.10. Economy
3.10.1. Capital cost
3.10.2. Cost of electricity
3.10.3. Cost of CO2 avoided
3.10.4. Cost of CO2 captured
3.11. Conclusion and future outlooks
Acknowledgments
References
Chapter 4: CO2 absorption by ionic liquids and deep eutectic solvents
4.1. Introduction
4.2. Interaction of ionic liquids and CO2
4.2.1. Physisorption mechanism
4.2.2. Chemisorption mechanism
4.2.2.1. Functionalization with amine groups
4.2.2.2. Amino acids functionalization
4.2.2.3. Functionalization with fluor groups
4.2.2.4. Functionalization with carbonyl groups
4.2.2.5. Functionalization with ether group
4.2.2.6. Protic and aprotic ILs.
4.2.2.7. Phase-change ILs
4.3. Selectivity of ILs
4.3.1. CO2 to CH4 selectivity
4.3.2. CO2 to H2S selectivity
4.3.3. CO2 selectivity in the presence of diatomic gases
4.4. ILs mixture solvents
4.4.1. Blending ILs with water
4.4.2. Blending ILs with organic solvents
4.4.3. IL-IL blended solvents
4.5. DESs and CO2 absorption
4.6. Challenges and outlook
References
Chapter 5: CO2 capture by solvents modified with nanoparticles
5.1. Introduction
5.2. CO2 absorption by nanofluids
5.2.1. Nanofluid synthesis
5.2.2. Nanofluids stabilization method
5.2.2.1. Physical method
5.2.2.2. Surface functionalization
5.2.2.3. Addition of surfactants
5.2.2.4. Surface charge controlling
5.2.3. Mechanisms of absorption enhancement in nanofluids
5.2.3.1. Grazing effect
5.2.3.2. Bubble breaking
5.2.3.3. Hydrodynamic effect
5.3. Nanoparticle organic hybrid material
5.3.1. NOHMs synthesis
5.3.2. Absorption mechanism in NOHMs
5.4. Challenges and outlooks
References
Chapter 6: Encapsulated liquid sorbents for CO2 capture
6.1. Introduction
6.2. CO2 capture by chemical and physical absorption
6.2.1. CO2 capture using chemical absorption: Alkanolamines and potassium carbonate solutions
6.2.2. CO2 capture by physical absorption: Commercial physical solvents and room-temperature ionic liquids (RTILs)
6.3. Micro and nano-encapsulation: Basic concept and preparation methods
6.3.1. Preparation methods
6.3.1.1. Spray-drying method
6.3.1.2. Emulsification method
6.3.1.3. In situ polymerization method
6.3.1.4. Interfacial polymerization
6.4. Micro and nanocapsules for CO2 capture
6.4.1. Chemical solvent encapsulation
6.4.2. Ionic liquid encapsulation
6.5. Patents describing the use of microcapsule for CO2 capture
6.6. Conclusion and future outlooks.
References
Chapter 7: Novel gas-liquid contactors for CO2 capture: Mini- and micro-channels, and rotating packed
7.1. Introduction
7.2. Mini- and micro-channel technology for CO2 absorption
7.2.1. Flow dynamics
7.2.2. The main components of mini- and micro-chemical systems in the CO2 absorption process
7.2.3. Mini- and micro-(channel) reactors
7.2.4. Micro-mixers
7.2.5. Experimental pressure drop measurement in mini-channels
7.2.6. CO2 capture in mini- and micro-channels
7.2.6.1. CO2 absorption into ammonia
7.2.6.2. CO2 absorption by sodium hydroxide
7.2.6.3. CO2 absorption by amines
7.2.6.4. CO2 removal by alcohols
7.2.6.5. CO2 capture by ionic liquids
7.2.7. Effect of operating parameters on CO2 absorption in mini-channels
7.2.7.1. Effect of the operating pressure
7.2.7.2. Effect of liquid and gas temperature
7.2.7.3. Effect of superficial velocity
7.2.7.4. Effect of liquid-phase concentration
7.2.8. Industrialization of mini-channels for CO2 absorption
7.3. Rotating packed bed technology for CO2 absorption
7.3.1. Theory
7.3.2. CO2 absorption in RPB by amines
7.3.3. CO2 absorption in RPB with ionic liquids
7.3.4. CO2 absorption into NaOH in RPB
7.3.5. A review on used systems for CO2 absorption in RPB
7.4. Conclusion
References
Section III: Adsorption techniques for CO2 capture
Chapter 8: CO2 adsorption by carbonaceous materials and nanomaterials
8.1. Introduction
8.1.1. Brief overview of the use of carbonaceous adsorbents for CO2
8.2. Carbonaceous CO2 adsorbents derived from alternative sources
8.3. Mechanism of CO2 capture by solid adsorbents
8.4. Various types of solid carbonaceous adsorbents for CO2 capture
8.4.1. Carbons derived from polymeric structures and petrochemical derivatives
8.4.2. Metal loaded carbons.
8.4.3. Ordered porous carbon adsorbents
8.4.4. Activated carbons and graphene structures
8.5. Novel carbonaceous structures for CO2 adsorption
8.5.1. Templated and doped carbonaceous structures for adsorption
8.5.2. Functionalized carbonaceous composite structures for CO2 capture
8.5.3. The use of ionic liquid functionalization in nanoporous carbons
8.6. Photocatalytic CO2 conversion using porous carbon
8.7. Techno-economic views on nanomaterial adsorbents
8.7.1. Technical challenges and aspects
8.7.2. A summary of economic challenges
8.8. Conclusions and future outlook
References
Chapter 9: CO2 adsorption by conventional and nanosized zeolites
9.1. Introduction
9.1.1. Carbon dioxide, properties, and hazards
9.1.2. Adsorption, definition, characteristics, advantages, and disadvantages
9.1.3. Adsorbent, classification, and properties
9.1.4. Zeolites, definitions, and properties
9.1.5. Nanosized zeolites (NSZ), differences, and properties
9.2. Adsorption of carbon dioxide on the conventional zeolites
9.2.1. Adsorption capacity of the conventional zeolites
9.2.2. Adsorption selectivity of the conventional zeolites
9.3. Adsorption of carbon dioxide on the NSZ
9.4. Conclusion and future outlook
Acknowledgments
References
Chapter 10: CO2 adsorption by functionalized sorbents
10.1. Introduction
10.2. CO2 capture methods
10.2.1. Adsorption
10.2.1.1. Carbon-based adsorbents
10.2.1.2. Silica-based adsorbents
10.2.1.3. Zeolites
10.2.1.4. Metal organic frameworks
10.2.1.5. Metal oxides
10.3. Conclusion and future outlooks
Acknowledgment
References
Chapter 11: CO2 adsorption by swing technologies and challenges on industrialization
11.1. Introduction
11.2. Methods of carbon capture
11.3. CO2 adsorption processes.
11.3.1. Adsorbent materials for CO2 adsorption.
Advances in Carbon Capture: Methods, Technologies and Applications
Copyright
Contents
Contributors
Editors biography
Section I: Introduction to CO2 capture
Chapter 1: CO2 emission sources, greenhouse gases, and the global warming effect
1.1. Introduction
1.2. Major greenhouse gases and their forms of emission
1.2.1. CH4 emission
1.2.2. N2O emission
1.2.3. CO2 emission
1.2.4. SO2 emission
1.3. Greenhouse gases and the greenhouse effect
1.4. CO2 as a major contributor to global warming and climate change
1.5. Current CO2 emission trends
1.6. Mitigation of CO2 emission in the industries
1.6.1. Power generation
1.6.2. Cement industry
1.6.3. Petrochemical plants
1.6.4. Iron and steel industry
1.7. International treaties and limitations on the reduction of CO2 emission
1.8. Future prospects of heat and mass integration during CO2 separation
1.9. Conclusions and future outlook
References
Chapter 2: Challenges on CO2 capture, utilization, and conversion
2.1. Introduction
2.2. The CO2 economy and the environmental effect of CCS technologies
2.2.1. Current scenario
2.2.2. The advantages and challenges of carbon utilization
2.3. CCS: Carbon dioxide capture technology (CCS), an overview
2.3.1. Absorption
2.3.2. Adsorption
2.3.3. Membrane separation: Membranes are relatively novel
2.3.4. Chemical looping cycle
2.3.5. Microalgae
2.3.6. Cryogenic CO2 capture
2.3.7. Cryogenic packed beds
2.3.8. External cooling loop cryogenic carbon capture
2.3.9. Antisublimation process
2.3.10. Cryogenic distillation
2.3.11. CryoCell process
2.3.12. Stirling cooler system
2.4. Carbon dioxide utilization technology (CCU)
2.4.1. Physical CO2 utilization
2.4.2. Chemical CO2 utilization.
2.4.3. Polymers and fine chemicals from carbon dioxide
2.4.4. Biochemical carbon dioxide utilization
2.4.5. Electrochemical utilization of CO2
2.4.6. New paradigms in CO2 utilization processes
2.5. CCS versus carbon capture and utilization (CCU)
2.6. Conclusions and future outlook
References
Section II: Absorption techniques and methods for CO2 capture
Chapter 3: CO2 absorption by common solvents
3.1. Introduction
3.2. Carbon capture technologies
3.2.1. Postcombustion capture
3.2.2. Precombustion capture
3.2.3. Oxy-fuel combustion
3.3. Industrial applications of CO2 capture
3.4. Different solvent for CO2 capture
3.4.1. Chemical solvents
3.4.2. Physical solvents
3.4.3. Hybrid solvents
3.5. Analysis of CO2 solubility data
3.5.1. Effect of pressure on the solubility of CO2
3.5.2. Effect of temperature on the solubility of CO2
3.5.3. Effect of hybrid solvent on the solubility of CO2
3.6. CO2 absorption reaction kinetics
3.6.1. Zwitterion mechanism
3.6.2. Termolecular mechanism
3.6.3. Base-catalyzed hydration mechanism
3.7. Mass transfer
3.8. Regeneration of amines
3.9. Degradation of amines
3.10. Economy
3.10.1. Capital cost
3.10.2. Cost of electricity
3.10.3. Cost of CO2 avoided
3.10.4. Cost of CO2 captured
3.11. Conclusion and future outlooks
Acknowledgments
References
Chapter 4: CO2 absorption by ionic liquids and deep eutectic solvents
4.1. Introduction
4.2. Interaction of ionic liquids and CO2
4.2.1. Physisorption mechanism
4.2.2. Chemisorption mechanism
4.2.2.1. Functionalization with amine groups
4.2.2.2. Amino acids functionalization
4.2.2.3. Functionalization with fluor groups
4.2.2.4. Functionalization with carbonyl groups
4.2.2.5. Functionalization with ether group
4.2.2.6. Protic and aprotic ILs.
4.2.2.7. Phase-change ILs
4.3. Selectivity of ILs
4.3.1. CO2 to CH4 selectivity
4.3.2. CO2 to H2S selectivity
4.3.3. CO2 selectivity in the presence of diatomic gases
4.4. ILs mixture solvents
4.4.1. Blending ILs with water
4.4.2. Blending ILs with organic solvents
4.4.3. IL-IL blended solvents
4.5. DESs and CO2 absorption
4.6. Challenges and outlook
References
Chapter 5: CO2 capture by solvents modified with nanoparticles
5.1. Introduction
5.2. CO2 absorption by nanofluids
5.2.1. Nanofluid synthesis
5.2.2. Nanofluids stabilization method
5.2.2.1. Physical method
5.2.2.2. Surface functionalization
5.2.2.3. Addition of surfactants
5.2.2.4. Surface charge controlling
5.2.3. Mechanisms of absorption enhancement in nanofluids
5.2.3.1. Grazing effect
5.2.3.2. Bubble breaking
5.2.3.3. Hydrodynamic effect
5.3. Nanoparticle organic hybrid material
5.3.1. NOHMs synthesis
5.3.2. Absorption mechanism in NOHMs
5.4. Challenges and outlooks
References
Chapter 6: Encapsulated liquid sorbents for CO2 capture
6.1. Introduction
6.2. CO2 capture by chemical and physical absorption
6.2.1. CO2 capture using chemical absorption: Alkanolamines and potassium carbonate solutions
6.2.2. CO2 capture by physical absorption: Commercial physical solvents and room-temperature ionic liquids (RTILs)
6.3. Micro and nano-encapsulation: Basic concept and preparation methods
6.3.1. Preparation methods
6.3.1.1. Spray-drying method
6.3.1.2. Emulsification method
6.3.1.3. In situ polymerization method
6.3.1.4. Interfacial polymerization
6.4. Micro and nanocapsules for CO2 capture
6.4.1. Chemical solvent encapsulation
6.4.2. Ionic liquid encapsulation
6.5. Patents describing the use of microcapsule for CO2 capture
6.6. Conclusion and future outlooks.
References
Chapter 7: Novel gas-liquid contactors for CO2 capture: Mini- and micro-channels, and rotating packed
7.1. Introduction
7.2. Mini- and micro-channel technology for CO2 absorption
7.2.1. Flow dynamics
7.2.2. The main components of mini- and micro-chemical systems in the CO2 absorption process
7.2.3. Mini- and micro-(channel) reactors
7.2.4. Micro-mixers
7.2.5. Experimental pressure drop measurement in mini-channels
7.2.6. CO2 capture in mini- and micro-channels
7.2.6.1. CO2 absorption into ammonia
7.2.6.2. CO2 absorption by sodium hydroxide
7.2.6.3. CO2 absorption by amines
7.2.6.4. CO2 removal by alcohols
7.2.6.5. CO2 capture by ionic liquids
7.2.7. Effect of operating parameters on CO2 absorption in mini-channels
7.2.7.1. Effect of the operating pressure
7.2.7.2. Effect of liquid and gas temperature
7.2.7.3. Effect of superficial velocity
7.2.7.4. Effect of liquid-phase concentration
7.2.8. Industrialization of mini-channels for CO2 absorption
7.3. Rotating packed bed technology for CO2 absorption
7.3.1. Theory
7.3.2. CO2 absorption in RPB by amines
7.3.3. CO2 absorption in RPB with ionic liquids
7.3.4. CO2 absorption into NaOH in RPB
7.3.5. A review on used systems for CO2 absorption in RPB
7.4. Conclusion
References
Section III: Adsorption techniques for CO2 capture
Chapter 8: CO2 adsorption by carbonaceous materials and nanomaterials
8.1. Introduction
8.1.1. Brief overview of the use of carbonaceous adsorbents for CO2
8.2. Carbonaceous CO2 adsorbents derived from alternative sources
8.3. Mechanism of CO2 capture by solid adsorbents
8.4. Various types of solid carbonaceous adsorbents for CO2 capture
8.4.1. Carbons derived from polymeric structures and petrochemical derivatives
8.4.2. Metal loaded carbons.
8.4.3. Ordered porous carbon adsorbents
8.4.4. Activated carbons and graphene structures
8.5. Novel carbonaceous structures for CO2 adsorption
8.5.1. Templated and doped carbonaceous structures for adsorption
8.5.2. Functionalized carbonaceous composite structures for CO2 capture
8.5.3. The use of ionic liquid functionalization in nanoporous carbons
8.6. Photocatalytic CO2 conversion using porous carbon
8.7. Techno-economic views on nanomaterial adsorbents
8.7.1. Technical challenges and aspects
8.7.2. A summary of economic challenges
8.8. Conclusions and future outlook
References
Chapter 9: CO2 adsorption by conventional and nanosized zeolites
9.1. Introduction
9.1.1. Carbon dioxide, properties, and hazards
9.1.2. Adsorption, definition, characteristics, advantages, and disadvantages
9.1.3. Adsorbent, classification, and properties
9.1.4. Zeolites, definitions, and properties
9.1.5. Nanosized zeolites (NSZ), differences, and properties
9.2. Adsorption of carbon dioxide on the conventional zeolites
9.2.1. Adsorption capacity of the conventional zeolites
9.2.2. Adsorption selectivity of the conventional zeolites
9.3. Adsorption of carbon dioxide on the NSZ
9.4. Conclusion and future outlook
Acknowledgments
References
Chapter 10: CO2 adsorption by functionalized sorbents
10.1. Introduction
10.2. CO2 capture methods
10.2.1. Adsorption
10.2.1.1. Carbon-based adsorbents
10.2.1.2. Silica-based adsorbents
10.2.1.3. Zeolites
10.2.1.4. Metal organic frameworks
10.2.1.5. Metal oxides
10.3. Conclusion and future outlooks
Acknowledgment
References
Chapter 11: CO2 adsorption by swing technologies and challenges on industrialization
11.1. Introduction
11.2. Methods of carbon capture
11.3. CO2 adsorption processes.
11.3.1. Adsorbent materials for CO2 adsorption.