000317538 000__ 01757cam\a22003254a\4500 000317538 001__ 317538 000317538 005__ 20210513115049.0 000317538 008__ 061004s2007\\\\njua\\\\\b\\\\001\0\eng\\ 000317538 010__ $$a 2006033160 000317538 020__ $$a9780691127385 (alk. paper) 000317538 020__ $$a0691127387 (alk. paper) 000317538 035__ $$a(OCoLC)ocm73502041 000317538 035__ $$a317538 000317538 040__ $$aDLC$$cDLC$$dBAKER$$dBTCTA$$dC#P$$dUKM$$dYDXCP$$dYBM$$dMUQ$$dUPP 000317538 049__ $$aISEA 000317538 05000 $$aBF456.N7$$bB94 2007 000317538 08200 $$a510.92$$222 000317538 1001_ $$aByers, William,$$d1943- 000317538 24510 $$aHow mathematicians think :$$busing ambiguity, contradiction, and paradox to create mathematics /$$cWilliam Byers. 000317538 260__ $$aPrinceton :$$bPrinceton University Press,$$cc2007. 000317538 300__ $$avii, 415 p. :$$bill. ;$$c24 cm. 000317538 504__ $$aIncludes bibliographical references (p. 399-405) and index. 000317538 5050_ $$aTuring on the light -- The light of ambiguity. Ambiguity in mathematics -- The contradictory in mathematics -- Paradoxes and mathematics : infinity and the real numbers -- More paradoxes of infinity : geometry, cardinality, and beyond -- The light as idea. The idea as an organizing principle -- Ideas, logic, and paradox -- Great ideas -- The light and the eye of the beholder. The truth of mathematics -- Conclusion : is mathematics algorithmic or creative? 000317538 650_0 $$aMathematicians$$xPsychology. 000317538 650_0 $$aMathematics$$xPsychological aspects. 000317538 650_0 $$aMathematics$$xPhilosophy. 000317538 85200 $$bgen$$hBF456.N7$$iB94$$i2007 000317538 85641 $$3Table of contents only$$uhttp://www.loc.gov/catdir/toc/ecip073/2006033160.html 000317538 85642 $$3Publisher description$$uhttp://www.loc.gov/catdir/enhancements/fy0704/2006033160-d.html 000317538 85642 $$3Contributor biographical information$$uhttp://www.loc.gov/catdir/enhancements/fy0734/2006033160-b.html 000317538 909CO $$ooai:library.usi.edu:317538$$pGLOBAL_SET 000317538 980__ $$aBIB 000317538 980__ $$aBOOK 000317538 994__ $$aC0$$bISE