000695345 000__ 03483cam\a2200481Ki\4500 000695345 001__ 695345 000695345 005__ 20230306135433.0 000695345 006__ m\\\\\o\\d\\\\\\\\ 000695345 007__ cr\cnu|||unuuu 000695345 008__ 130911t20132014sz\a\\\\omb\\\000\0\eng\d 000695345 020__ $$a9783319007410 $$qelectronic book 000695345 020__ $$a3319007416 $$qelectronic book 000695345 020__ $$z9783319007403 000695345 0247_ $$a10.1007/978-3-319-00741-0$$2doi 000695345 035__ $$aSP(OCoLC)ocn857824941 000695345 035__ $$aSP(OCoLC)857824941 000695345 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dN$T$$dCOO$$dYDXCP 000695345 049__ $$aISEA 000695345 050_4 $$aTA418.9.N35 000695345 08204 $$a620.5$$223 000695345 1001_ $$aLittlejohn, Samuel David,$$eauthor. 000695345 24510 $$aElectrical properties of graphite nanoparticles in silicone$$h[electronic resource] :$$bflexible oscillators and electromechanical sensing /$$cSamuel David Littlejohn. 000695345 264_1 $$aCham :$$bSpringer,$$c[2013?] 000695345 264_4 $$c©2014 000695345 300__ $$a1 online resource (xv, 166 pages) :$$billustrations (some color). 000695345 336__ $$atext$$btxt$$2rdacontent 000695345 337__ $$acomputer$$bc$$2rdamedia 000695345 338__ $$aonline resource$$bcr$$2rdacarrier 000695345 4901_ $$aSpringer theses,$$x2190-5053 000695345 502__ $$bPh.D.$$cUniversity of Bath$$d[2013?] 000695345 504__ $$aIncludes bibliographical references. 000695345 5050_ $$aBackground Theory -- Fabrication and Measurement -- Tunneling Negative Differential Resistance in a GSC -- Electromechanical Properties and Sensing -- Electronic Amplification in the NDR Region -- Conclusions and Future Work -- Publications -- Procedure for Imprint Lithography Stamp -- ICP-RIE Recipe for Deep Silicon Etch -- Synthesis of Silane Functionalized Naphthalenediimide -- Calculation of Cut-Off Frequency. 000695345 506__ $$aAccess limited to authorized users. 000695345 520__ $$aThis thesis examines a novel class of flexible electronic material with great potential for use in the construction of stretchable amplifiers and memory elements. Most remarkably the composite material produces spontaneous oscillations that increase in frequency when pressure is applied to it. In this way, the material mimics the excitatory response of pressure-sensing neurons in the human skin. The composites, formed of silicone and graphitic nanoparticles, were prepared in several allotropic forms and functionalized with naphthalene diimide molecules. A systematic study is presented of the negative differential resistance (NDR) region of the current-voltage curves, which is responsible for the material's active properties. This study was conducted as a function of temperature, graphite filling fraction, scaling to reveal the break-up of the samples into electric field domains at the onset of the NDR region, and an electric-field induced metal-insulator transition in graphite nanoparticles. The effect of molecular functionalization on the miscibility threshold and the current-voltage curves is demonstrated. Room-temperature and low-temperature measurements were performed on these composite films under strains using a remote-controlled, custom-made step motor bench. 000695345 588__ $$aDescription based on online resource; title from PDF title page (SpringerLink, viewed September 3, 2013). 000695345 650_0 $$aNanostructured materials$$xElectric properties. 000695345 650_0 $$aGraphite. 000695345 650_0 $$aNanosilicon. 000695345 830_0 $$aSpringer theses,$$x2190-5053 000695345 85280 $$bebk$$hSpringerLink 000695345 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://dx.doi.org/10.1007/978-3-319-00741-0$$zOnline Access 000695345 909CO $$ooai:library.usi.edu:695345$$pGLOBAL_SET 000695345 980__ $$aEBOOK 000695345 980__ $$aBIB 000695345 982__ $$aEbook 000695345 983__ $$aOnline 000695345 994__ $$a92$$bISE