000695557 000__ 03593cam\a2200457Ki\4500 000695557 001__ 695557 000695557 005__ 20230306135445.0 000695557 006__ m\\\\\o\\d\\\\\\\\ 000695557 007__ cr\cnu|||unuuu 000695557 008__ 131009t20132014enka\\\\ob\\\\001\0\eng\d 000695557 020__ $$a9781447155263 $$qelectronic book 000695557 020__ $$a1447155262 $$qelectronic book 000695557 020__ $$z9781447155256 000695557 0247_ $$a10.1007/978-1-4471-5526-3$$2doi 000695557 035__ $$aSP(OCoLC)ocn859673638 000695557 035__ $$aSP(OCoLC)859673638 000695557 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDXCP$$dN$T$$dCOO$$dCDX 000695557 049__ $$aISEA 000695557 050_4 $$aQH323.5 000695557 08204 $$a570.1/5118$$223 000695557 1001_ $$aWei, Juncheng,$$d1968-,$$eauthor. 000695557 24510 $$aMathematical aspects of pattern formation in biological systems$$h[electronic resource] /$$cJuncheng Wei, Matthias Winter. 000695557 264_1 $$aLondon :$$bSpringer,$$c[2013?] 000695557 264_4 $$c©2014 000695557 300__ $$a1 online resource (xii, 319 pages) :$$billustrations. 000695557 336__ $$atext$$btxt$$2rdacontent 000695557 337__ $$acomputer$$bc$$2rdamedia 000695557 338__ $$aonline resource$$bcr$$2rdacarrier 000695557 4901_ $$aApplied mathematical sciences,$$x0066-5452 ;$$vv.189 000695557 504__ $$aIncludes bibliographical references and index. 000695557 5050_ $$aExistence of spikes for the Gierer-Meinhardt system in one dimension -- The Nonlocal Eigenvalue Problem (NLEP) -- Stability of spikes for the Gierer-Meinhardt system in one dimension -- Existence of spikes for the shadow Gierer-Meinhardt system -- Existence and stability of spikes for the Gierer-Meinhardt system in two dimensions -- The Gierer-Meinhardt system with inhomogeneous coefficients -- Other aspects of the Gierer-Meinhardt system -- The Gierer-Meinhardt system with saturation -- Spikes for other two-component reaction-diffusion systems -- Reaction-diffusion systems with many components -- Biological applications. 000695557 506__ $$aAccess limited to authorized users. 000695557 520__ $$aThis monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models. The approach adopted in the monograph is based on the following paradigms: Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems. Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology. 000695557 588__ $$aDescription based on online resource; title from PDF title page (SpringerLink, viewed September 24, 2013). 000695557 650_0 $$aBiological systems$$xMathematical models. 000695557 7001_ $$aWinter, Matthias,$$eauthor. 000695557 830_0 $$aApplied mathematical sciences (Springer-Verlag New York Inc.) ;$$vv.189. 000695557 85280 $$bebk$$hSpringerLink 000695557 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://dx.doi.org/10.1007/978-1-4471-5526-3$$zOnline Access 000695557 909CO $$ooai:library.usi.edu:695557$$pGLOBAL_SET 000695557 980__ $$aEBOOK 000695557 980__ $$aBIB 000695557 982__ $$aEbook 000695557 983__ $$aOnline 000695557 994__ $$a92$$bISE