000704712 000__ 02569cam\a2200457Ma\4500
000704712 001__ 704712
000704712 005__ 20230306135846.0
000704712 006__ m\\\\\o\\d\\\\\\\\
000704712 007__ cr\un\nnnunnun
000704712 008__ 140502s2014\\\\sz\\\\\\ob\\\\000\0\eng\d
000704712 019__ $$a878920996
000704712 020__ $$a9783319058672$$qelectronic book
000704712 020__ $$a3319058673$$qelectronic book
000704712 020__ $$z9783319058665
000704712 0247_ $$a10.1007/978-3-319-05867-2$$2doi
000704712 035__ $$aSP(OCoLC)ocn881161929
000704712 035__ $$aSP(OCoLC)881161929$$z(OCoLC)878920996
000704712 040__ $$aEBLCP$$beng$$epn$$cEBLCP$$dOCLCO$$dHEBIS$$dOCLCQ$$dIDEBK$$dE7B$$dYDXCP$$dGW5XE$$dA7U$$dCOO$$dCDX$$dUWO$$dOCLCF$$dBEDGE
000704712 049__ $$aISEA
000704712 050_4 $$aQA1.T78$$b.C37 2014eb
000704712 08204 $$a530.14$$223
000704712 1001_ $$aCarrozza, Sylvain.
000704712 24510 $$aTensorial methods and renormalization in group field theories$$h[electronic resource] /$$cSylvain Carrozza.
000704712 260__ $$aCham :$$bSpringer,$$cc2014.
000704712 300__ $$a1 online resource.
000704712 336__ $$atext$$btxt$$2rdacontent
000704712 337__ $$acomputer$$bc$$2rdamedia
000704712 338__ $$aonline resource$$bcr$$2rdacarrier
000704712 4901_ $$aSpringer theses
000704712 504__ $$aIncludes bibliographical references.
000704712 506__ $$aAccess limited to authorized users.
000704712 520__ $$aThe main focus of this thesis is the mathematical structure of Group Field Theories (GFTs) from the point of view of renormalization theory. Such quantum field theories are found in approaches to quantum gravity related, on the one hand, to Loop Quantum Gravity (LQG) and, on the other, to matrix- and tensor models. Background material on these topics, including conceptual and technical aspects, are introduced in the first chapters. The work then goes on to explain how the standard tools of Quantum Field Theory can be generalized to GFTs, and exploited to study the large cut-off behaviour and renormalization group transformations of the latter. Among the new results derived in this context are a proof of renormalizability of a three-dimensional GFT with gauge group SU(2), which opens the way to applications of the formalism to quantum gravity.
000704712 588__ $$aDescription based on print version record.
000704712 650_0 $$aField theory (Physics)
000704712 650_0 $$aRenormalization (Physics)
000704712 77608 $$iPrint version:$$aCarrozza, Sylvain.$$tTensorial Methods and Renormalization in Group Field Theories.$$dDordrecht : Springer, ©2014$$z9783319058665
000704712 830_0 $$aSpringer theses.
000704712 85280 $$bebk$$hSpringerLink
000704712 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://dx.doi.org/10.1007/978-3-319-05867-2$$zOnline Access
000704712 909CO $$ooai:library.usi.edu:704712$$pGLOBAL_SET
000704712 980__ $$aEBOOK
000704712 980__ $$aBIB
000704712 982__ $$aEbook
000704712 983__ $$aOnline
000704712 994__ $$a92$$bISE