000711880 000__ 02757cam\a2200433Ii\4500 000711880 001__ 711880 000711880 005__ 20230306140215.0 000711880 006__ m\\\\\o\\d\\\\\\\\ 000711880 007__ cr\cn\nnnunnun 000711880 008__ 141016s2014\\\\sz\a\\\\ob\\\\001\0\eng\d 000711880 020__ $$a9783319107417$$qelectronic book 000711880 020__ $$a3319107410$$qelectronic book 000711880 020__ $$z9783319107400 000711880 0247_ $$a10.1007/978-3-319-10741-7$$2doi 000711880 035__ $$aSP(OCoLC)ocn893109681 000711880 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dN$T$$dYDXCP$$dUPM 000711880 049__ $$aISEA 000711880 050_4 $$aQA242 000711880 08204 $$a512.7/3$$223 000711880 1001_ $$aBeck, József,$$eauthor. 000711880 24510 $$aProbabilistic diophantine approximation$$h[electronic resource] :$$brandomness in lattice point counting /$$cJózsef Beck. 000711880 264_1 $$aCham :$$bSpringer,$$c2014. 000711880 300__ $$a1 online resource (xvi, 487 pages) :$$billustrations. 000711880 336__ $$atext$$btxt$$2rdacontent 000711880 337__ $$acomputer$$bc$$2rdamedia 000711880 338__ $$aonline resource$$bcr$$2rdacarrier 000711880 4901_ $$aSpringer Monographs in Mathematics,$$x1439-7382 000711880 504__ $$aIncludes bibliographical references and index. 000711880 5050_ $$aPreface -- 1. What is "probabilistic" diophantine approximation? -- 2. Expectation, and its connection with quadratic fields -- 3. Variance, and its connection with quadratic fields -- 4. Proving randomness -- 5. Pell equation, super irregularity and randomness -- 6. More on randomness. 000711880 506__ $$aAccess limited to authorized users. 000711880 520__ $$aThis book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals. It covers classical material on the subject as well as many new results developed by the author over the past decade. A range of ideas from other areas of mathematics are brought to bear with surprising connections to topics such as formulae for class numbers, special values of L-functions, and Dedekind sums. Care is taken to elaborate difficult proofs by motivating major steps and accompanying them with background explanations, enabling the reader to learn the theory and relevant techniques. Written by one of the acknowledged experts in the field, Probabilistic Diophantine Approximation is presented in a clear and informal style with sufficient detail to appeal to both advanced students and researchers in number theory. 000711880 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 16, 2014). 000711880 650_0 $$aDiophantine approximation. 000711880 650_0 $$aProbabilities. 000711880 830_0 $$aSpringer monographs in mathematics. 000711880 85280 $$bebk$$hSpringerLink 000711880 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://dx.doi.org/10.1007/978-3-319-10741-7$$zOnline Access 000711880 909CO $$ooai:library.usi.edu:711880$$pGLOBAL_SET 000711880 980__ $$aEBOOK 000711880 980__ $$aBIB 000711880 982__ $$aEbook 000711880 983__ $$aOnline 000711880 994__ $$a92$$bISE