000711944 000__ 03326cam\a2200445Ii\4500 000711944 001__ 711944 000711944 005__ 20230306140218.0 000711944 006__ m\\\\\o\\d\\\\\\\\ 000711944 007__ cr\cn\nnnunnun 000711944 008__ 141027s2014\\\\sz\a\\\\ob\\\\000\0\eng\d 000711944 020__ $$a9783034808712$$qelectronic book 000711944 020__ $$a3034808712$$qelectronic book 000711944 020__ $$z9783034808705 000711944 0247_ $$a10.1007/978-3-0348-0871-2$$2doi 000711944 035__ $$aSP(OCoLC)ocn893858089 000711944 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDXCP$$dUPM 000711944 049__ $$aISEA 000711944 050_4 $$aQA613.62 000711944 08204 $$a514/.72$$223 000711944 24500 $$aFoliations$$h[electronic resource] :$$bdynamics, geometry and topology /$$cMasayuki Asaoka, Aziz El Kacimi Alaoui, Steven Hurder, Ken Richardson ; editors for this volume: Jesús Álvarez López, Marcel Nicolau. 000711944 264_1 $$aBasel :$$bBirkhäuser,$$c2014. 000711944 300__ $$a1 online resource (ix, 198 pages) :$$billustrations (some color). 000711944 336__ $$atext$$btxt$$2rdacontent 000711944 337__ $$acomputer$$bc$$2rdamedia 000711944 338__ $$aonline resource$$bcr$$2rdacarrier 000711944 4901_ $$aAdvanced Courses in Mathematics, CRM Barcelona,$$x2297-0304 000711944 504__ $$aIncludes bibliographical references. 000711944 5050_ $$aFundamentals of Foliation Theory -- Foliation Dynamics -- Deformation of Locally Free Actions and Leafwise Cohomology -- Transversal Dirac Operators on Distributions, Foliations, and G-Manifolds. 000711944 506__ $$aAccess limited to authorized users. 000711944 520__ $$aThis book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods arising and used in the study of foliations. The lectures by A. El Kacimi Alaoui offer an introduction to Foliation Theory, with emphasis on examples and transverse structures. S. Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations, like limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, stable manifolds, Pesin Theory, and hyperbolic, parabolic, and elliptic types of foliations, all of them illustrated with examples. The lectures by M. Asaoka are devoted to the computation of the leafwise cohomology of orbit foliations given by locally free actions of certain Lie groups, and its application to the description of the deformation of those actions. In the lectures by K. Richardson, he studies the geometric and analytic properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will appeal to mathematicians interested in the applications to foliations of subjects like topology of manifolds, dynamics, cohomology or global analysis. 000711944 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 27, 2014). 000711944 650_0 $$aFoliations (Mathematics) 000711944 7001_ $$aAsaoka, Masayuki,$$eauthor. 000711944 7001_ $$aAlvarez López, Jesús A.,$$eeditor. 000711944 7001_ $$aNicolau, Marcel,$$eeditor. 000711944 830_0 $$aAdvanced courses in mathematics, CRM Barcelona. 000711944 85280 $$bebk$$hSpringerLink 000711944 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://dx.doi.org/10.1007/978-3-0348-0871-2$$zOnline Access 000711944 909CO $$ooai:library.usi.edu:711944$$pGLOBAL_SET 000711944 980__ $$aEBOOK 000711944 980__ $$aBIB 000711944 982__ $$aEbook 000711944 983__ $$aOnline 000711944 994__ $$a92$$bISE