000723637 000__ 04843cam\a2200517Ii\4500 000723637 001__ 723637 000723637 005__ 20230306140346.0 000723637 006__ m\\\\\o\\d\\\\\\\\ 000723637 007__ cr\cn\nnnunnun 000723637 008__ 140929t20142015gw\a\\\\ob\\\\001\0\eng\d 000723637 019__ $$a908084852 000723637 020__ $$a9783662445723$$qelectronic book 000723637 020__ $$a3662445727$$qelectronic book 000723637 020__ $$z9783662445716 000723637 0247_ $$a10.1007/978-3-662-44572-3$$2doi 000723637 035__ $$aSP(OCoLC)ocn891583413 000723637 035__ $$aSP(OCoLC)891583413$$z(OCoLC)908084852 000723637 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dN$T$$dYDXCP$$dOCLCQ$$dOCLCF$$dIDEBK$$dEBLCP$$dOCLCO 000723637 049__ $$aISEA 000723637 050_4 $$aHE336.T7 000723637 08204 $$a388.4/131$$223 000723637 1001_ $$aChen, Xiqun,$$eauthor. 000723637 24510 $$aStochastic evolutions of dynamic traffic flow$$h[electronic resource] :$$bmodeling and applications /$$cXiqun (Michael) Chen, Li Li, Qixin Shi. 000723637 264_1 $$aHeidelberg :$$bSpringer,$$c[2014] 000723637 264_4 $$c©2015 000723637 300__ $$a1 online resource (xix, 193 pages) :$$billustrations (some color) 000723637 336__ $$atext$$btxt$$2rdacontent 000723637 337__ $$acomputer$$bc$$2rdamedia 000723637 338__ $$aonline resource$$bcr$$2rdacarrier 000723637 504__ $$aIncludes bibliographical references and index. 000723637 5050_ $$aPreface; Contents; Acronyms; 1 Introduction; 1.1 Motivation; 1.2 Objectives; 1.3 Contributions; 1.4 Organization; 2 Literature Review; 2.1 Introduction; 2.2 Historical Development of Traffic Flow Theory; 2.2.1 Macroscopic Modeling; 2.2.2 Mesoscopic Modeling; 2.2.3 Microscopic Modeling; 2.2.4 Stochastic Modeling; 2.3 Probabilistic Headway/Spacing Distributions; 2.3.1 Simple Univariable Distributions; 2.3.2 Compositional Distributions; 2.3.3 Mixed Distributions; 2.3.4 Random Matrix Model; 2.4 Summary; 3 Empirical Observations of Stochastic and Dynamic Evolutions of Traffic Flow 000723637 5058_ $$a3.1 Introduction3.2 Characteristics of Headway/Spacing/Velocity; 3.3 Congested Platoon Oscillations; 3.4 Time-Frequency Properties; 3.5 Summary; 4 A Markov Model Based on Headway/Spacing Distributions; 4.1 Introduction; 4.2 A Markov Model for Headway/Spacing Distributions; 4.2.1 Background; 4.2.2 Markov-Process Simulation Models; 4.2.3 Simulation Results; 4.2.4 Discussions; 4.3 Asymmetric Stochastic Tau Theory in Car-Following; 4.3.1 Asymmetric Stochastic Extension of the Tau Theory; 4.3.2 Testing Results; 4.3.3 Discussions 000723637 5058_ $$a5 Stochastic Fundamental Diagram Based on Headway/Spacing Distributions5.1 Introduction; 5.2 Newell's Simplified Model and Its Stochastic Extension; 5.3 The Homogeneous Platoon Model; 5.3.1 Basic Idea; 5.3.2 Summation of Lognormal Random Variables; 5.3.3 Average Headway Distribution; 5.3.4 Model Validation; 5.3.5 Sensitivity Analysis; 5.4 The Heterogeneous Platoon Model; 5.4.1 Average Headway Distribution; 5.4.2 Validation; 5.4.3 Boundaries of Congested Flows; 5.5 Summary; 6 Traffic Flow Breakdown Model Based on Headway/Spacing Distributions; 6.1 Introduction 000723637 5058_ $$a6.2 Nonparametric Lifetime Statistics Approach6.3 Queueing Models for Breakdown Probability; 6.3.1 Backgrounds; 6.3.2 Some Previous Models; 6.3.3 G/G/1 Queueing Model; 6.3.4 Discussions; 6.3.5 Model Validation; 6.3.6 Summary; 6.4 Phase Diagram Analysis; 6.4.1 Backgrounds; 6.4.2 The Spatial-Temporal Queueing Model; 6.4.3 The Analytical Solution for Phase Diagram; 6.4.4 Numerical Example; 6.5 Discussions; 7 Conclusions and Future Work; Appendix A Linear Stability Analysis of the Higher-Order Macroscopic Model; Appendix B Linear Stability Analysis of the Multi-Anticipative Car-Following Models 000723637 506__ $$aAccess limited to authorized users. 000723637 520__ $$aThis book reveals the underlying mechanisms of complexity and stochastic evolutions of traffic flows. Using Eulerian and Lagrangian measurements, the authors propose lognormal headway/spacing/velocity distributions and subsequently develop a Markov car-following model to describe drivers' random choices concerning headways/spacings, putting forward a stochastic fundamental diagram model for wide scattering flow-density points. In the context of highway onramp bottlenecks, the authors present a traffic flow breakdown probability model and spatial-temporal queuing model to improve the stability. 000723637 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 29, 2014). 000723637 650_0 $$aTraffic flow$$xMathematical models. 000723637 650_0 $$aStochastic processes. 000723637 7001_ $$aLi, Li,$$eauthor. 000723637 7001_ $$aShi, Qixin,$$eauthor. 000723637 77608 $$iPrint version:$$aChen, Xiqun (Michael)$$tStochastic Evolutions of Dynamic Traffic Flow : Modeling and Applications$$dBerlin, Heidelberg : Springer Berlin Heidelberg,c2014$$z9783662445716 000723637 852__ $$bebk 000723637 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-44572-3$$zOnline Access$$91397441.1 000723637 909CO $$ooai:library.usi.edu:723637$$pGLOBAL_SET 000723637 980__ $$aEBOOK 000723637 980__ $$aBIB 000723637 982__ $$aEbook 000723637 983__ $$aOnline 000723637 994__ $$a92$$bISE