000724068 000__ 03315cam\a2200493Ii\4500 000724068 001__ 724068 000724068 005__ 20230306140418.0 000724068 006__ m\\\\\o\\d\\\\\\\\ 000724068 007__ cr\cn\nnnunnun 000724068 008__ 141105t20152015gw\a\\\\ob\\\\001\0\eng\d 000724068 019__ $$a898199866$$a907307231$$a907560006$$a908041580$$a908083821 000724068 020__ $$a9783658076184$$qelectronic book 000724068 020__ $$a3658076186$$qelectronic book 000724068 020__ $$z9783658076177 000724068 0247_ $$a10.1007/978-3-658-07618-4$$2doi 000724068 035__ $$aSP(OCoLC)ocn894509434 000724068 035__ $$aSP(OCoLC)894509434$$z(OCoLC)898199866$$z(OCoLC)907307231$$z(OCoLC)907560006$$z(OCoLC)908041580$$z(OCoLC)908083821 000724068 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dYDXCP$$dN$T$$dCOO$$dOCLCF$$dCDX$$dIDEBK$$dE7B$$dEBLCP 000724068 049__ $$aISEA 000724068 050_4 $$aQA199 000724068 08204 $$a512/.57$$223 000724068 1001_ $$aKlawitter, Daniel,$$eauthor. 000724068 24510 $$aClifford algebras$$h[electronic resource] :$$bgeometric modelling and chain geometries with application in kinematics /$$cDaniel Klawitter ; foreword by Prof. Dr. Gunter Weiss. 000724068 264_1 $$aWiesbaden :$$bSpringer Spektrum,$$c[2015] 000724068 264_4 $$c©2015 000724068 300__ $$a1 online resource (xviii, 216 pages) :$$billustrations (some color) 000724068 336__ $$atext$$btxt$$2rdacontent 000724068 337__ $$acomputer$$bc$$2rdamedia 000724068 338__ $$aonline resource$$bcr$$2rdacarrier 000724068 347__ $$atext file$$bPDF$$2rda 000724068 500__ $$a"Dissertation TU Dresden, 2014." 000724068 504__ $$aIncludes bibliographical references and index. 000724068 5050_ $$aModels and representations of classical groups -- Clifford algebras, chain geometries over Clifford algebras -- Kinematic mappings for Pin and Spin groups -- Cayley-Klein geometries. 000724068 506__ $$aAccess limited to authorized users. 000724068 520__ $$aAfter revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About the Author Daniel Klawitter is a scientific assistant at the Institute of Geometry at the Technical University of Dresden, Germany. 000724068 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed November 20, 2014). 000724068 650_0 $$aClifford algebras. 000724068 650_0 $$aKinematics. 000724068 7001_ $$aWeiss, Gunter,$$eauthor of introduction, etc. 000724068 77608 $$iPrint version:$$z9783658076177 000724068 852__ $$bebk 000724068 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-658-07618-4$$zOnline Access$$91397441.1 000724068 909CO $$ooai:library.usi.edu:724068$$pGLOBAL_SET 000724068 980__ $$aEBOOK 000724068 980__ $$aBIB 000724068 982__ $$aEbook 000724068 983__ $$aOnline 000724068 994__ $$a92$$bISE