000724126 000__ 05475cam\a2200529Ii\4500 000724126 001__ 724126 000724126 005__ 20230306140422.0 000724126 006__ m\\\\\o\\d\\\\\\\\ 000724126 007__ cr\cn\nnnunnun 000724126 008__ 141106t20142015sz\a\\\\ob\\\\001\0\eng\d 000724126 019__ $$a908083288 000724126 020__ $$a9783319119304$$qelectronic book 000724126 020__ $$a3319119303$$qelectronic book 000724126 020__ $$z9783319119298 000724126 035__ $$aSP(OCoLC)ocn894554116 000724126 035__ $$aSP(OCoLC)894554116$$z(OCoLC)908083288 000724126 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dYDXCP$$dN$T$$dOCLCF$$dIDEBK$$dEBLCP 000724126 049__ $$aISEA 000724126 050_4 $$aTA418.4 000724126 08204 $$a620.1/1292$$223 000724126 1001_ $$aDanyluk, Michael,$$eauthor. 000724126 24510 $$aRolling contact fatigue in a vacuum$$h[electronic resource] :$$btest equipment and coating analysis /$$cMichael Danyluk, Anoop Dhingra. 000724126 264_1 $$aCham :$$bSpringer,$$c[2014] 000724126 264_4 $$c©2015 000724126 300__ $$a1 online resource (xii, 167 pages) :$$billustrations (some color) 000724126 336__ $$atext$$btxt$$2rdacontent 000724126 337__ $$acomputer$$bc$$2rdamedia 000724126 338__ $$aonline resource$$bcr$$2rdacarrier 000724126 504__ $$aIncludes bibliographical references and index. 000724126 5050_ $$aPreface; Contents; Chapter 1: Introduction; 1.1 Coating Processes Compatible with High-Voltage Devices; 1.2 Monograph Overview; 1.3 Plasma Diagnostics and Measurements; 1.4 Process Control Considerations; 1.5 Monograph Organization; References; Part I: Vacuum Systems Infrastructure and Chamber Design; Chapter 2: Vacuum Chamber Design; 2.1 Introduction; 2.2 Vacuum Chamber Design Considerations; 2.3 Chamber Material Selection; 2.3.1 Material Outgassing; 2.3.2 Vacuum Welds, Gaskets, and Attachments; 2.3.3 Vacuum Chamber Isolation; 2.4 Vacuum Components Selection; 2.4.1 High-Vacuum Pumping System 000724126 5058_ $$a2.4.2 Vacuum Measurement System Selection2.4.3 Vacuum System Safety Interlocks; 2.5 Case Study: Chamber Vibration Isolation and Measurement; 2.5.1 Vibration Transmissibility Design; 2.5.2 Accelerometer Response Comparison; 2.6 Case Study Continued: Optimum Chamber Design; 2.6.1 Design Optimization Analysis; 2.6.2 Compare Optimum Designs; 2.7 Assembly and Cleaning; 2.8 Residual Gas Analysis; 2.8.1 Establishing Chamber Baseline; 2.8.2 Helium Leak Check; 2.9 System Commissioning; References; Chapter 3: Rolling Contact Testing of Ball Bearing Elements; 3.1 Introduction 000724126 5058_ $$a3.2 Analysis of Rolling Contact in Vacuum3.2.1 Calculations of Contact Stress; 3.2.2 Contact Load Versus Cycles; 3.3 Rolling Contact Wear; 3.3.1 Empirical Approach; 3.3.2 Thermodynamic Approach to Friction and Wear; References; Chapter 4: Rolling Contact Fatigue in High Vacuum; 4.1 Introduction; 4.2 Rolling Contact Fatigue Test Platform; 4.2.1 Test Configuration in Oil; 4.2.2 Test Configuration in Vacuum; 4.2.3 Rolling Elements in Vacuum; 4.3 Rolling Contact Fatigue Vacuum Test; 4.3.1 Coated Rolling Elements in Vacuum; 4.3.2 Test Assembly in Vacuum Chamber; 4.3.3 RCF Test Failure Criterion 000724126 5058_ $$a4.3.4 Analysis Tools4.3.5 RCF Test Results; 4.3.6 Post-Test Autopsy of Contacting Elements; 4.3.7 Post-Test Elemental Content of Film; 4.4 Friction and Wear Calculations; 4.4.1 Third-Body Transfer Mechanism; 4.4.2 Empirical Comparison: Lundberg-Palmgren Model; Conclusions and Observations; References; Chapter 5: Coating Thickness Calculation and Adhesion; 5.1 Thickness Measurement Techniques; 5.1.1 Calculate Thickness by Weight; 5.1.2 Thickness Measurement Using XRF Spectrometry; 5.2 Pretest Adhesion Check; 5.2.1 Scratch Test Ball Sample; 5.2.2 Particulate Detection Tape Testing 000724126 5058_ $$a5.3 Closing CommentsReferences; Part II: Simulation and Testing of Thin Films in a Vacuum Environment; Chapter 6: Ion-Plating Process Model; 6.1 Plasma and Deposition Processes; 6.2 Postdeposition Fatigue Testing; 6.3 Plasma-Assisted Deposition; 6.4 Coating Procedure for RCF Testings; 6.5 Plasma Effects on Coating Thickness; 6.6 Analysis of Extreme DoE Coating Tests; 6.7 RCF Testing of Extreme DoE Coated Balls; 6.8 Ion-Plating Model in SimulinkTM; 6.8.1 Cathode dc-Sheath Model; 6.8.2 Sputter and Evaporation-Sputter Deposition Models; 6.8.3 Elements of the Ion-Plating Simulation Model 000724126 506__ $$aAccess limited to authorized users. 000724126 520__ $$aThis book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV. 000724126 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 9, 2014). 000724126 650_0 $$aMechanical wear$$xTesting. 000724126 650_0 $$aRolling contact. 000724126 650_0 $$aMaterials$$xFatigue. 000724126 650_0 $$aVacuum technology. 000724126 7001_ $$aDhingra, Anoop,$$eauthor. 000724126 77608 $$iPrint version:$$aDanyluk, Michael$$tRolling Contact Fatigue in a Vacuum : Test Equipment and Coating Analysis$$dCham : Springer International Publishing,c2014$$z9783319119298 000724126 852__ $$bebk 000724126 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-11930-4$$zOnline Access$$91397441.1 000724126 909CO $$ooai:library.usi.edu:724126$$pGLOBAL_SET 000724126 980__ $$aEBOOK 000724126 980__ $$aBIB 000724126 982__ $$aEbook 000724126 983__ $$aOnline 000724126 994__ $$a92$$bISE