000724195 000__ 05382cam\a2200529Ii\4500 000724195 001__ 724195 000724195 005__ 20230306140426.0 000724195 006__ m\\\\\o\\d\\\\\\\\ 000724195 007__ cr\cn\nnnunnun 000724195 008__ 141110t20142015sz\a\\\\o\\\\\000\0\eng\d 000724195 019__ $$a908088177 000724195 020__ $$a9783319109817$$qelectronic book 000724195 020__ $$a3319109812$$qelectronic book 000724195 020__ $$z9783319109800 000724195 035__ $$aSP(OCoLC)ocn894893372 000724195 035__ $$aSP(OCoLC)894893372$$z(OCoLC)908088177 000724195 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dYDXCP$$dOCLCO$$dGW5XE$$dN$T$$dOCLCO$$dIDEBK$$dEBLCP 000724195 049__ $$aISEA 000724195 050_4 $$aR859.7.C65$$bB56 2015 000724195 08204 $$a610.1/13$$223 000724195 24500 $$aBiomedical technology$$h[electronic resource] /$$cThomas Lenarz, Peter Wriggers, editors. 000724195 264_1 $$aCham :$$bSpringer,$$c[2014] 000724195 264_4 $$c©2015 000724195 300__ $$a1 online resource (viii, 187 pages) :$$billustrations (some color). 000724195 336__ $$atext$$btxt$$2rdacontent 000724195 337__ $$acomputer$$bc$$2rdamedia 000724195 338__ $$aonline resource$$bcr$$2rdacarrier 000724195 4901_ $$aLecture Notes in Applied and Computational Mechanics,$$x1613-7736 ;$$vvolume 74 000724195 5050_ $$aPreface; Contents; RVE Procedure for Estimating the Elastic Properties of Inhomogeneous Microstructures Such as Bone Tissue; 1 Introduction; 2 Material and Method; 2.1 Generation of Stochastic RVE; 2.2 Continuum Mechanics Approach; 2.3 Homogenization Approach; 2.4 Window Size and Boundary Conditions; 2.5 Homogenized Anisotropy; 2.6 Effective Isotropy; 3 Results; 3.1 Monte-Carlo Simulation; 3.2 RVE Size and Boundary Conditions; 3.3 Analysis of Stochastic Microstructures; 4 Discussion; References 000724195 5058_ $$aA Gradient-Enhanced Continuum Damage Model for Residually Stressed Fibre-Reinforced Materials at Finite Strains1 Introduction; 2 Gradient Enhancement of a Continuum Damage Formulation; 2.1 Basic Kinematics; 2.2 General Gradient-Enhanced Format of the Free Energy; 2.3 Total Potential Energy; 2.4 Variational Form; 3 Constitutive Relations; 3.1 Hyperelastic Part of the Free Energy; 3.2 Gradient-Enhanced Part of the Free Energy; 3.3 Gradient-Enhanced Damage Model; 4 Finite Element Discretisation; 4.1 Discretisation; 4.2 Linearisation; 5 Residual Stresses; 6 Numerical Examples 000724195 5058_ $$a6.1 Reproduction of the Opening Angle Experiment6.2 Inflation of the Perturbed Tube; 7 Summary; References; A Mechanically Stimulated Fracture Healing Model Using a Finite Element Framework; 1 Introduction; 2 Mathematical Fracture Healing Model; 2.1 Mechanical Stimulation; 3 Methods; 3.1 Simulation; 4 Results; 4.1 Parameter Study; 5 Discussion; References; The Customized Artificial Hip Cup: Design and Manufacturing of an Innovative Prosthesis; 1 Introduction; 2 Bone Remodelling; 3 Manufacturing Concept; 3.1 Comparative Simulations; 3.2 High Pressure Sheet Metal Forming 000724195 5058_ $$a4 Derivation of the Universal Prosthesis Geometry4.1 General Design Chain; 4.2 Preliminary Investigation; 4.3 Agglomerative Clustering; 5 Outlook; References; On the Role of Phase Change in Modelling Drug-Eluting Stents; 1 Introduction; 2 A Two-Layer Model for Drug Elution; 2.1 The Two-Phase Coating Model; 2.2 The Two-Phase Wall Model; 2.3 Physiological Parameters; 2.4 Numerical Simulation; 3 Results and Discussion; References; Development of Magnesium Alloy Scaffolds to Support Biological Myocardial Grafts: A Finite Element Investigation; 1 Introduction 000724195 5058_ $$a2 Simulation of Flat and Preformed Scaffolds2.1 Finite Element Modeling; 2.2 Modeling Results; 3 Developing of New Scaffold Shapes; 3.1 Improving Scaffold Shapes and Introducing New Designs; 3.2 Results for Shape Improvements and New Designs; 4 Summary and Discussion; 5 Conclusion; References; Finite Element Analysis of Transcatheter Aortic Valve Implantation in the Presence of Aortic Leaflet Calcifications; 1 Introduction; 2 Methods; 2.1 Aortic Root Models Definition and Dynamics; 2.2 TAV Simulations; 3 Results; 3.1 Dynamics of the Aortic Root Models; 3.2 TAV Simulations; 4 Discussion 000724195 506__ $$aAccess limited to authorized users. 000724195 520__ $$aDuring the last years computational methods lead to new approaches that can be applied within medical practice. Based on the tremendous advances in medical imaging and high-performance computing, virtual testing is able to help in medical decision processes or implant designs. Current challenges in medicine and engineering are related to the application of computational methods to clinical medicine and the study of biological systems at different scales. Additionally manufacturers will be able to use computational tools and methods to predict the performance of their medical devices in virtu. 000724195 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 17, 2014). 000724195 650_0 $$aMedicine$$xComputer simulation. 000724195 650_0 $$aBiomedical materials$$xComputer simulation. 000724195 650_0 $$aMedical technology$$xComputer simulation. 000724195 7001_ $$aLenarz, Thomas,$$eeditor. 000724195 7001_ $$aWriggers, P.,$$eeditor. 000724195 77608 $$iPrint version:$$aLenarz, Thomas$$tBiomedical Technology$$dCham : Springer International Publishing,c2014$$z9783319109800 000724195 830_0 $$aLecture notes in applied and computational mechanics ;$$vv. 74. 000724195 852__ $$bebk 000724195 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-10981-7$$zOnline Access$$91397441.1 000724195 909CO $$ooai:library.usi.edu:724195$$pGLOBAL_SET 000724195 980__ $$aEBOOK 000724195 980__ $$aBIB 000724195 982__ $$aEbook 000724195 983__ $$aOnline 000724195 994__ $$a92$$bISE