000724482 000__ 03310cam\a2200505Ii\4500 000724482 001__ 724482 000724482 005__ 20230306140535.0 000724482 006__ m\\\\\o\\d\\\\\\\\ 000724482 007__ cr\cn\nnnunnun 000724482 008__ 141124t20152015sz\a\\\\ob\\\\001\0\eng\d 000724482 019__ $$a899563509$$a908087625 000724482 020__ $$a9783319126289$$qelectronic book 000724482 020__ $$a3319126288$$qelectronic book 000724482 020__ $$z9783319126272 000724482 020__ $$z331912627X 000724482 0247_ $$a10.1007/978-3-319-12628-9$$2doi 000724482 035__ $$aSP(OCoLC)ocn896824765 000724482 035__ $$aSP(OCoLC)896824765$$z(OCoLC)899563509$$z(OCoLC)908087625 000724482 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dE7B$$dYDXCP$$dCOO$$dGW5XE$$dOCLCF$$dCDX$$dIDEBK$$dEBLCP 000724482 049__ $$aISEA 000724482 050_4 $$aQ375 000724482 08204 $$a003.54$$223 000724482 1001_ $$aServin, Christian,$$eauthor. 000724482 24510 $$aPropagation of interval and probabilistic uncertainty in cyberinfrastructure-related data processing and data fusion$$h[electronic resource] /$$cChristian Servin, Vladik Kreinovich. 000724482 264_1 $$aCham :$$bSpringer,$$c[2015] 000724482 264_4 $$c©2015 000724482 300__ $$a1 online resource :$$billustrations. 000724482 336__ $$atext$$btxt$$2rdacontent 000724482 337__ $$acomputer$$bc$$2rdamedia 000724482 338__ $$aonline resource$$bcr$$2rdacarrier 000724482 4901_ $$aStudies in systems, decision and control ;$$vvolume 15 000724482 504__ $$aIncludes bibliographical references and index. 000724482 5050_ $$aIntroduction -- Towards a More Adequate Description of Uncertainty -- Towards Justification of Heuristic Techniques for Processing Uncertainty -- Towards More Computationally Efficient Techniques for Processing Uncertainty -- Towards Better Ways of Extracting Information About Uncertainty from Data. 000724482 506__ $$aAccess limited to authorized users. 000724482 520__ $$aOn various examples ranging from geosciences to environmental sciences, this book explains how to generate an adequate description of uncertainty, how to justify semiheuristic algorithms for processing uncertainty, and how to make these algorithms more computationally efficient. It explains in what sense the existing approach to uncertainty as a combination of random and systematic components is only an approximation, presents a more adequate three-component model with an additional periodic error component, and explains how uncertainty propagation techniques can be extended to this model. The book provides a justification for a practically efficient heuristic technique (based on fuzzy decision-making). It explains how the computational complexity of uncertainty processing can be reduced. The book also shows how to take into account that in real life, the information about uncertainty is often only partially known, and, on several practical examples, explains how to extract the missing information about uncertainty from the available data. 000724482 588__ $$aDescription based on online resource; title from PDF title page (viewed December 2, 2014). 000724482 650_0 $$aUncertainty (Information theory) 000724482 650_0 $$aCyberinfrastructure. 000724482 7001_ $$aKreinovich, Vladik,$$eauthor. 000724482 77608 $$iPrint version:$$z331912627X$$z9783319126272 000724482 830_0 $$aStudies in systems. decision and control ;$$vv. 15. 000724482 852__ $$bebk 000724482 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-12628-9$$zOnline Access$$91397441.1 000724482 909CO $$ooai:library.usi.edu:724482$$pGLOBAL_SET 000724482 980__ $$aEBOOK 000724482 980__ $$aBIB 000724482 982__ $$aEbook 000724482 983__ $$aOnline 000724482 994__ $$a92$$bISE