000724854 000__ 05308cam\a2200505Ii\4500 000724854 001__ 724854 000724854 005__ 20230306140555.0 000724854 006__ m\\\\\o\\d\\\\\\\\ 000724854 007__ cr\cn\nnnunnun 000724854 008__ 141215t20142015nyua\\\\ob\\\\001\0\eng\d 000724854 019__ $$a908088466 000724854 020__ $$a9783662455975$$qelectronic book 000724854 020__ $$a3662455978$$qelectronic book 000724854 020__ $$z9783662455968 000724854 035__ $$aSP(OCoLC)ocn898125749 000724854 035__ $$aSP(OCoLC)898125749$$z(OCoLC)908088466 000724854 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dGW5XE$$dN$T$$dYDXCP$$dOCLCF$$dIDEBK$$dCDX$$dEBLCP$$dVLB 000724854 049__ $$aISEA 000724854 050_4 $$aTA418.9.N35$$bZ43 2015eb 000724854 08204 $$a620.1/15$$223 000724854 1001_ $$aZhang, Fan,$$eauthor. 000724854 24510 $$aPhoton upconversion nanomaterials$$h[electronic resource] /$$cFan Zhang. 000724854 264_1 $$aNew York :$$bSpringer,$$c[2015] 000724854 264_4 $$c©2015 000724854 300__ $$a1 online resource (xix, 416 pages) :$$billustrations. 000724854 336__ $$atext$$btxt$$2rdacontent 000724854 337__ $$acomputer$$bc$$2rdamedia 000724854 338__ $$aonline resource$$bcr$$2rdacarrier 000724854 4901_ $$aNanostructure Science and Technology,$$x1571-5744 000724854 504__ $$aIncludes bibliographical references and index. 000724854 5050_ $$aPreface; Contents; Abbreviations; 1 General Introduction to Upconversion Luminescence Materials; Abstract; 1.1 Energy Transfer Mechanism of the Upconversion Materials; 1.2 The Category of the Upconversion Materials; 1.2.1 Lanthanide-based Upconverters; 1.2.1.1 Activators; 1.2.1.2 Sensitizer; 1.2.1.3 Host Materials; 1.2.1.4 The Nonlinear Nature and Efficiency of Upconversion Luminescence; 1.2.2 Transition Metal Upconverters; 1.2.3 Mixed Rare Earth/Transition Metal Upconverters; 1.2.4 Organic Upconverters; 1.2.5 Lanthanide-doped Upconversion Nanomaterials; 1.3 Summary; References 000724854 5058_ $$a2 ``Wet'' Chemical Synthesis and Manipulation of Upconversion NanoparticlesAbstract; 2.1 Introduction; 2.2 Mechanism for the Synthesis of Monodisperse Nanocrystals; 2.2.1 Nucleation; 2.2.2 Synthetic Techniques for the Separation of Nucleation and Growth; 2.2.3 Growth; 2.3 Synthesis Routes for the Upconversion Nanoparticles; 2.3.1 Thermolysis Strategy; 2.3.2 Hydro(Solvo)Thermal Strategy; 2.3.3 Other Methods for the Synthesis of the Lanthanide-Doped Luminescent Nanoparticles; 2.3.4 Ultrasmall Upconversion Nanoparticles with Bright Upconversion Luminescence 000724854 5058_ $$a2.4 Synthesis Routes for the Fabrication of the Core@Shell Structured Upconversion Nanoparticles2.4.1 One-Pot Heating-Up Method; 2.4.2 Successive Layer-by-Layer Strategy for the Fabrication of Multi-shell-Structured Upconversion Nanoparticles; 2.4.3 Ostwald Ripening Strategy for the Fabrication of Core@Shell Upconversion Nanoparticles; 2.4.4 Cation Exchange Strategy for the Fabrication of Core@Shell Upconversion Nanoparticles; 2.5 Characterizations; 2.5.1 Optical Characterization; 2.5.2 Chemical and Structural Characterization; 2.5.2.1 Transmission Electron Microscopy 000724854 5058_ $$a2.5.2.2 X-ray Photoelectron Spectroscopy2.5.2.3 X-ray Diffraction; 2.6 Summary and Perspectives; References; 3 Upconversion Luminescence of Lanthanide Ion-Doped Nanocrystals; Abstract; 3.1 Introduction; 3.2 Upconversion Emission Color Tunability; 3.2.1 Multi-color Emission Using Different Host -- Dopant Combinations; 3.2.2 Doping Concentration-Induced Multi-color Emission; 3.2.3 Tuning Upconversion Emission Using FRET or LRET; 3.2.4 Single-Band Upconversion Luminescence; 3.2.5 Other Ways to Tune Upconversion Emission; 3.3 Strategies for Enhancement of Upconversion Efficiency 000724854 5058_ $$a3.3.1 Selection of Novel Host Matrix3.3.2 Plasmonic-Enhanced Upconversion Luminescence; 3.3.3 Fabrication of Highly Efficient Lanthanide Upconversion Nanoparticles by Homogeneous Doping; 3.3.4 Tuning the Excitation Wavelength; 3.4 Core@Shell Structure-Based Luminescence Engineering of the Upconversion Nanocrystals; 3.4.1 Enhancing Upconversion Luminescence with Core@Shell Structure; 3.4.2 Tuning Upconversion Emission Using Core@Shell Structures; 3.4.3 Tuning of the Excitation Wavelength; 3.5 Upconversion Nanocrystals Versus Quantum Dots and Dyes; 3.6 Summary and Perspectives; References 000724854 506__ $$aAccess limited to authorized users. 000724854 520__ $$aThis book introduces the latest advances made in both fundamental studies and potential applications of upconversion nanomaterials, particularly in the field of high-resolution in vitro bioanalysis and in vivo imaging. This book starts with the synthesis and characterization, and focuses on applications ranging from materials science to biology. Above all, it describes cutting-edge advances in upconversion nanophosphor (UCNP)-based applications in multiplexed encoding, guest delivery and release systems, photodynamic therapy (PDT), solar cells, photocatalysis and so on. The major barriers tha. 000724854 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 5, 2014). 000724854 650_0 $$aNanostructured materials. 000724854 77608 $$iPrint version:$$aZhang, Fan$$tPhoton Upconversion Nanomaterials$$dBerlin, Heidelberg : Springer Berlin Heidelberg,c2014$$z9783662455968 000724854 830_0 $$aNanostructure science and technology. 000724854 852__ $$bebk 000724854 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-45597-5$$zOnline Access$$91397441.1 000724854 909CO $$ooai:library.usi.edu:724854$$pGLOBAL_SET 000724854 980__ $$aEBOOK 000724854 980__ $$aBIB 000724854 982__ $$aEbook 000724854 983__ $$aOnline 000724854 994__ $$a92$$bISE