Linked e-resources
Details
Table of Contents
Foreword; Contents; 1 Laser Diode Basics; Abstract; 1.1 Laser Diode Types; 1.1.1 Homojunction Laser Diodes; 1.1.2 Gain-Guided Laser Diodes; 1.1.3 Index-Guided Laser Diodes; 1.1.4 Quantum Well and Multi-quantum-Well Laser Diodes; 1.1.5 Intersubband and Interband Quantum Cascade Lasers; 1.1.5.1 Intersubband Quantum Cascade Lasers; 1.1.5.2 Interband Quantum Cascade Laser Diodes; 1.1.6 DFB and DBR Laser Diodes; 1.1.7 Vertical Cavity Surface Emitting Laser Diodes (VCSEL); 1.1.8 Other Terminologies Often Used to Categorize Laser Diodes; 1.2 Gain; 1.2.1 Lasing Threshold Condition
1.2.2 Laser Diode Materials and Gain Profiles1.3 Spectral Properties; 1.3.1 Longitudinal Modes; 1.3.2 Mode Competition; 1.3.3 Mode Hopping; 1.3.4 Wavelength; 1.3.5 Linewidth; 1.4 Power; 1.4.1 Continuous Wave Operation; 1.4.2 Modulated or Pulsed; 1.5 Temperature Effect; 1.6 Electrical Properties; 1.6.1 Internal Circuit for DC Operation; 1.6.2 Series Resistance; 1.6.3 Intrinsic Circuit for Modulation; 1.7 Main Failure Mechanism and How to Protect Laser Diodes; 1.8 Laser Diode Mechanical Properties, Packages, and Modules; 1.8.1 Mechanical Tolerance; 1.8.2 Laser Diode Packages
1.8.3 Laser Diode Modules1.9 Vendors and Distributors of Laser Diodes, Laser Diode Modules and Laser Diode Optics; 1.9.1 Laser Diode Vendors; 1.9.2 Laser Diode Module Vendors; 1.9.3 Laser Diode Optics Vendors; References; 2 Laser Diode Beam Basics; Abstract; 2.1 Single Transverse Mode Laser Diode Beams; 2.1.1 Elliptical Beams; 2.1.2 Large Divergences; 2.1.3 Quasi-Gaussian Intensity Profiles; 2.1.4 Astigmatism; 2.1.5 Polarization; 2.2 Multi-transverse Mode Laser Diode Beams; 2.2.1 Wide Stripe Laser Diode Beams; 2.2.2 Laser Diode Stack Beams; 2.3 Laser Diode Beam Propagation
2.3.1 Basic Mode Paraxial Gaussian Beams2.3.2 M2 Factor Approximation; 2.3.3 Thin Lens Equation for a Real Laser Beam; 2.3.4 Non-paraxial Gaussian Beams; 2.3.5 Raytracing Technique; 2.3.5.1 ABCD Matrix Method; 2.3.5.2 Apply ABCD Matrix to a Gaussian Beam; 2.4 Zemax Modeling of a Gaussian Beam Propagating Through a Lens; 2.4.1 Collimating a Gaussian Beam; 2.4.2 Focusing a Gaussian Beam; References; 3 Laser Diode Beam Manipulations; Abstract; 3.1 Collimating and Focusing; 3.1.1 Lenses; 3.1.1.1 Aspheric Lenses; 3.1.1.2 Lens Groups; 3.1.1.3 Gradient Index Lenses; 3.1.2 Beam Shape Evolvement
3.1.3 Beam Quality Check3.1.4 Collimation or Focusing a Laser Diode Beam, Graphical Explanations; 3.1.4.1 Collimation; 3.1.4.2 Focusing; 3.1.5 A Numerical Example of Collimating and Focusing a Laser Diode Beam; 3.1.6 Deliver a Smallest Beam Spot to a Long Distance; 3.1.7 Laser Line Generator; 3.1.7.1 Macro Lines; 3.1.7.2 Micro Lines; 3.2 Numerical Analysis of the Propagation, Collimation, and Focusing of a Laser Diode Beam; 3.2.1 Propagation of a Nonparaxial Laser Diode Beam; 3.2.2 Collimating a Nonparaxial Laser Diode Beam
1.2.2 Laser Diode Materials and Gain Profiles1.3 Spectral Properties; 1.3.1 Longitudinal Modes; 1.3.2 Mode Competition; 1.3.3 Mode Hopping; 1.3.4 Wavelength; 1.3.5 Linewidth; 1.4 Power; 1.4.1 Continuous Wave Operation; 1.4.2 Modulated or Pulsed; 1.5 Temperature Effect; 1.6 Electrical Properties; 1.6.1 Internal Circuit for DC Operation; 1.6.2 Series Resistance; 1.6.3 Intrinsic Circuit for Modulation; 1.7 Main Failure Mechanism and How to Protect Laser Diodes; 1.8 Laser Diode Mechanical Properties, Packages, and Modules; 1.8.1 Mechanical Tolerance; 1.8.2 Laser Diode Packages
1.8.3 Laser Diode Modules1.9 Vendors and Distributors of Laser Diodes, Laser Diode Modules and Laser Diode Optics; 1.9.1 Laser Diode Vendors; 1.9.2 Laser Diode Module Vendors; 1.9.3 Laser Diode Optics Vendors; References; 2 Laser Diode Beam Basics; Abstract; 2.1 Single Transverse Mode Laser Diode Beams; 2.1.1 Elliptical Beams; 2.1.2 Large Divergences; 2.1.3 Quasi-Gaussian Intensity Profiles; 2.1.4 Astigmatism; 2.1.5 Polarization; 2.2 Multi-transverse Mode Laser Diode Beams; 2.2.1 Wide Stripe Laser Diode Beams; 2.2.2 Laser Diode Stack Beams; 2.3 Laser Diode Beam Propagation
2.3.1 Basic Mode Paraxial Gaussian Beams2.3.2 M2 Factor Approximation; 2.3.3 Thin Lens Equation for a Real Laser Beam; 2.3.4 Non-paraxial Gaussian Beams; 2.3.5 Raytracing Technique; 2.3.5.1 ABCD Matrix Method; 2.3.5.2 Apply ABCD Matrix to a Gaussian Beam; 2.4 Zemax Modeling of a Gaussian Beam Propagating Through a Lens; 2.4.1 Collimating a Gaussian Beam; 2.4.2 Focusing a Gaussian Beam; References; 3 Laser Diode Beam Manipulations; Abstract; 3.1 Collimating and Focusing; 3.1.1 Lenses; 3.1.1.1 Aspheric Lenses; 3.1.1.2 Lens Groups; 3.1.1.3 Gradient Index Lenses; 3.1.2 Beam Shape Evolvement
3.1.3 Beam Quality Check3.1.4 Collimation or Focusing a Laser Diode Beam, Graphical Explanations; 3.1.4.1 Collimation; 3.1.4.2 Focusing; 3.1.5 A Numerical Example of Collimating and Focusing a Laser Diode Beam; 3.1.6 Deliver a Smallest Beam Spot to a Long Distance; 3.1.7 Laser Line Generator; 3.1.7.1 Macro Lines; 3.1.7.2 Micro Lines; 3.2 Numerical Analysis of the Propagation, Collimation, and Focusing of a Laser Diode Beam; 3.2.1 Propagation of a Nonparaxial Laser Diode Beam; 3.2.2 Collimating a Nonparaxial Laser Diode Beam