000725829 000__ 03126cam\a2200481Ii\4500 000725829 001__ 725829 000725829 005__ 20230306140700.0 000725829 006__ m\\\\\o\\d\\\\\\\\ 000725829 007__ cr\cn\nnnunnun 000725829 008__ 150302s2015\\\\sz\a\\\\ob\\\\000\0\eng\d 000725829 010__ $$a 2014958018 000725829 019__ $$a904059105$$a906172260 000725829 020__ $$a9783319123738$$qelectronic book 000725829 020__ $$a3319123734$$qelectronic book 000725829 020__ $$z9783319123721 000725829 0247_ $$a10.1007/978-3-319-12373-8$$2doi 000725829 035__ $$aSP(OCoLC)ocn904244041 000725829 035__ $$aSP(OCoLC)904244041$$z(OCoLC)904059105$$z(OCoLC)906172260 000725829 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dUX0$$dUPM$$dNAM 000725829 049__ $$aISEA 000725829 050_4 $$aQA274.73 000725829 08204 $$a519.2$$223 000725829 24500 $$aLévy matters IV$$h[electronic resource] :$$bestimation for discretely observed Lévy processes /$$cDenis Belomestny, Fabienne Comte, Valentine Genon-Catalot, Hiroki Masuda, Markus Rei€. 000725829 264_1 $$aCham :$$bSpringer,$$c2015. 000725829 300__ $$a1 online resource (xv, 286 pages) :$$billustrations (some color). 000725829 336__ $$atext$$btxt$$2rdacontent 000725829 337__ $$acomputer$$bc$$2rdamedia 000725829 338__ $$aonline resource$$bcr$$2rdacarrier 000725829 347__ $$atext file$$bPDF$$2rda 000725829 4901_ $$aLecture Notes in Mathematics, Lévy matters,$$x0075-8434 ;$$v2128 000725829 504__ $$aIncludes bibliographical references. 000725829 5050_ $$aEstimation and calibration of Lévy models via Fourier methods -- Adaptive Estimation for Lévy processes -- Parametric estimation of Lévy processes. 000725829 506__ $$aAccess limited to authorized users. 000725829 520__ $$aThe aim of this volume is to provide an extensive account of the most recent advances in statistics for discretely observed Lévy processes. These days, statistics for stochastic processes is a lively topic, driven by the needs of various fields of application, such as finance, the biosciences, and telecommunication. The three chapters of this volume are completely dedicated to the estimation of Lévy processes, and are written by experts in the field. The first chapter by Denis Belomestny and Markus Rei€ treats the low frequency situation, and estimation methods are based on the empirical characteristic function. The second chapter by Fabienne Comte and Valery Genon-Catalon is dedicated to non-parametric estimation mainly covering the high-frequency data case. A distinctive feature of this part is the construction of adaptive estimators, based on deconvolution or projection or kernel methods. The last chapter by Hiroki Masuda considers the parametric situation. The chapters cover the main aspects of the estimation of discretely observed Lévy processes, when the observation scheme is regular, from an up-to-date viewpoint. 000725829 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 2, 2015). 000725829 650_0 $$aLévy processes. 000725829 7001_ $$aBelomestny, Denis,$$eauthor. 000725829 77608 $$iPrint version:$$z9783319123721 000725829 830_0 $$aLévy matters ;$$v2128. 000725829 852__ $$bebk 000725829 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-12373-8$$zOnline Access$$91397441.1 000725829 909CO $$ooai:library.usi.edu:725829$$pGLOBAL_SET 000725829 980__ $$aEBOOK 000725829 980__ $$aBIB 000725829 982__ $$aEbook 000725829 983__ $$aOnline 000725829 994__ $$a92$$bISE