000726728 000__ 03249cam\a2200481Ii\4500 000726728 001__ 726728 000726728 005__ 20230306140836.0 000726728 006__ m\\\\\o\\d\\\\\\\\ 000726728 007__ cr\cn\nnnunnun 000726728 008__ 150427s2015\\\\gw\\\\\\ob\\\\000\0\eng\d 000726728 019__ $$a914151166 000726728 020__ $$a9783658095086$$qelectronic book 000726728 020__ $$a3658095083$$qelectronic book 000726728 020__ $$z9783658095079 000726728 0247_ $$a10.1007/978-3-658-09508-6$$2doi 000726728 035__ $$aSP(OCoLC)ocn908030578 000726728 035__ $$aSP(OCoLC)908030578$$z(OCoLC)914151166 000726728 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dCDX$$dE7B$$dYDXCP$$dIDEBK$$dCOO$$dOCLCO$$dUWO$$dEBLCP$$dOCLCO$$dDEBSZ$$dVLB 000726728 049__ $$aISEA 000726728 050_4 $$aHG6015$$b.N64 2015eb 000726728 08204 $$a332.645$$223 000726728 1001_ $$aNofer, Michael,$$eauthor. 000726728 24514 $$aThe value of social media for predicting stock returns$$h[electronic resource] :$$bpreconditions, instruments and performance analysis /$$cMichael Nofer ; with a foreword by Prof. Dr. Oliver Hinz. 000726728 264_1 $$aWiesbaden :$$bSpringer Vieweg,$$c[2015] 000726728 300__ $$a1 online resource. 000726728 336__ $$atext$$btxt$$2rdacontent 000726728 337__ $$acomputer$$bc$$2rdamedia 000726728 338__ $$aonline resource$$bcr$$2rdacarrier 000726728 4900_ $$aResearch 000726728 500__ $$aDissertation, TU Darmstadt, Germany, 2014. 000726728 504__ $$aIncludes bibliographical references 000726728 5050_ $$aIntroduction -- Market Anomalies on Two-Sided Auction Platforms -- Are Crowds on the Internet Wiser than Experts? {u2013} The Case of a Stock Prediction Community -- Using Twitter to Predict the Stock Market: Where is the Mood Effect? -- The Economic Impact of Privacy Violations and Security Breaches {u2013} A Laboratory Experiment -- Literature. 000726728 506__ $$aAccess limited to authorized users. 000726728 520__ $$aMichael Nofer examines whether and to what extent Social Media can be used to predict stock returns. Market-relevant information is available on various platforms on the Internet, which largely consist of user generated content. For instance, emotions can be extracted in order to identify the investors' risk appetite and in turn the willingness to invest in stocks. Discussion forums also provide an opportunity to identify opinions on certain companies. Taking Social Media platforms as examples, the author examines the forecasting quality of user generated content on the Internet. Contents Market Anomalies on Two-Sided Auction Platforms Are Crowds on the Internet Wiser than Experts? {u2013} The Case of a Stock Prediction Community Using Twitter to Predict the Stock Market: Where is the Mood Effect? The Economic Impact of Privacy Violations and Security Breaches {u2013} A Laboratory Experiment Target Groups Scientists and students in the field of IT, finance and business Private investors, institutional investors About the Author Michael Nofer wrote his dissertation at the Chair of Information Systems. 000726728 650_0 $$aSpeculation. 000726728 650_0 $$aStock price forecasting. 000726728 650_0 $$aOnline social networks$$xEconomic aspects. 000726728 650_0 $$aSocial media$$xEconomic aspects. 000726728 77608 $$iPrint version:$$z9783658095079 000726728 852__ $$bebk 000726728 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-658-09508-6$$zOnline Access$$91397441.1 000726728 909CO $$ooai:library.usi.edu:726728$$pGLOBAL_SET 000726728 980__ $$aEBOOK 000726728 980__ $$aBIB 000726728 982__ $$aEbook 000726728 983__ $$aOnline 000726728 994__ $$a92$$bISE