000727815 000__ 02750cam\a2200457Ii\4500 000727815 001__ 727815 000727815 005__ 20230306140938.0 000727815 006__ m\\\\\o\\d\\\\\\\\ 000727815 007__ cr\cn\nnnunnun 000727815 008__ 150623s2015\\\\sz\a\\\\ob\\\\000\0\eng\d 000727815 019__ $$a911846631 000727815 020__ $$a9783319200163$$qelectronic book 000727815 020__ $$a331920016X$$qelectronic book 000727815 020__ $$z9783319200156 000727815 035__ $$aSP(OCoLC)ocn911386372 000727815 035__ $$aSP(OCoLC)911386372$$z(OCoLC)911846631 000727815 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dOCLCO$$dIDEBK$$dYDXCP$$dEBLCP$$dAZU 000727815 049__ $$aISEA 000727815 050_4 $$aQA280 000727815 08204 $$a519.5/5$$223 000727815 1001_ $$aIatsenko, Dmytro,$$eauthor. 000727815 24510 $$aNonlinear mode decomposition$$h[electronic resource] :$$btheory and applications /$$cDmytro Iatsenko. 000727815 264_1 $$aCham :$$bSpringer,$$c[2015] 000727815 264_4 $$c©2015 000727815 300__ $$a1 online resource :$$billustrations. 000727815 336__ $$atext$$btxt$$2rdacontent 000727815 337__ $$acomputer$$bc$$2rdamedia 000727815 338__ $$aonline resource$$bcr$$2rdacarrier 000727815 4901_ $$aSpringer theses : recognizing outstanding Ph.D. research,$$x2190-5061 000727815 500__ $$aOriginally presented as the author's thesis (doctoral)--University of Lancaster, 2015. 000727815 504__ $$aIncludes bibliographical references. 000727815 5050_ $$aIntroduction.- Linear Time-Frequency Analysis.- Extraction of Components from the TFR -- Nonlinear Mode Decomposition -- Examples, Applications and Related Issues.- Conclusion. 000727815 506__ $$aAccess limited to authorized users. 000727815 520__ $$aThis work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications, and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. MatLab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications. 000727815 588__ $$aOnline resource; title from PDF title page (viewed June 25, 2015). 000727815 650_0 $$aTime-series analysis$$xMathematical models. 000727815 830_0 $$aSpringer theses. 000727815 852__ $$bebk 000727815 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-20016-3$$zOnline Access$$91397441.1 000727815 909CO $$ooai:library.usi.edu:727815$$pGLOBAL_SET 000727815 980__ $$aEBOOK 000727815 980__ $$aBIB 000727815 982__ $$aEbook 000727815 983__ $$aOnline 000727815 994__ $$a92$$bISE