000733540 000__ 03826cam\a2200457Ii\4500 000733540 001__ 733540 000733540 005__ 20230306141050.0 000733540 006__ m\\\\\o\\d\\\\\\\\ 000733540 007__ cr\cn\nnnunnun 000733540 008__ 150805s2015\\\\ne\\\\\\ob\\\\001\0\eng\d 000733540 020__ $$a9789401772617$$qelectronic book 000733540 020__ $$a9401772614$$qelectronic book 000733540 020__ $$z9789401772600 000733540 0247_ $$a10.1007/978-94-017-7261-7$$2doi 000733540 035__ $$aSP(OCoLC)ocn915768056 000733540 035__ $$aSP(OCoLC)915768056 000733540 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dIDEBK$$dGW5XE$$dYDXCP$$dSNK$$dOCLCF$$dUPM$$dCOO$$dCDX 000733540 049__ $$aISEA 000733540 050_4 $$aQC174.25.R4 000733540 08204 $$a530.12$$223 000733540 1001_ $$aHorwitz, L. P.$$q(Lawrence Paul),$$d1930-$$eauthor. 000733540 24510 $$aRelativistic quantum mechanics$$h[electronic resource] /$$cLawrence P. Horwitz. 000733540 264_1 $$aDordrecht :$$bSpringer,$$c2015. 000733540 264_4 $$c©2015 000733540 300__ $$a1 online resource. 000733540 336__ $$atext$$btxt$$2rdacontent 000733540 337__ $$acomputer$$bc$$2rdamedia 000733540 338__ $$aonline resource$$bcr$$2rdacarrier 000733540 4901_ $$aFundamental theories of physics,$$vvolume 180 000733540 504__ $$aIncludes bibliographical references and index. 000733540 5050_ $$aIntroduction and some problems encountered in the construction of a relativistic quantum theory -- Relativistic Classical and Quantum Mechanics -- Spin, Statistics and Correlations -- Gauge Fields and Flavor Oscillations -- The Relativistic Action at a Distance Two Body Problem -- Experimental Consequences of Coherence in Time -- Scattering Theory and Resonances -- Some applications: The Electron Anomalous Moment, Invariant Berry Phases and the Spacetime Lattice -- Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS -- Relativistic Classical and Quantum Statistical Mechanics, and Covariant Boltzmann Equation. 000733540 506__ $$aAccess limited to authorized users. 000733540 520__ $$aThis book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied. 000733540 588__ $$aOnline resource; title from PDF title page (viewed August 12, 2015). 000733540 650_0 $$aRelativistic quantum theory. 000733540 77608 $$iPrint version:$$z9789401772600 000733540 830_0 $$aFundamental theories of physics ;$$vv. 180. 000733540 85280 $$bebk$$hSpringerLink 000733540 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-94-017-7261-7$$zOnline Access$$91397441.1 000733540 909CO $$ooai:library.usi.edu:733540$$pGLOBAL_SET 000733540 980__ $$aEBOOK 000733540 980__ $$aBIB 000733540 982__ $$aEbook 000733540 983__ $$aOnline 000733540 994__ $$a92$$bISE