000739213 000__ 04682cam\a2200505Ii\4500 000739213 001__ 739213 000739213 005__ 20230306141138.0 000739213 006__ m\\\\\o\\d\\\\\\\\ 000739213 007__ cr\cn\nnnunnun 000739213 008__ 151209s2015\\\\sz\\\\\\o\\\\\000\0\eng\d 000739213 019__ $$a931807396$$a932334399 000739213 020__ $$a9783319175638$$qelectronic book 000739213 020__ $$a3319175637$$qelectronic book 000739213 020__ $$z9783319175621 000739213 020__ $$z3319175629 000739213 035__ $$aSP(OCoLC)ocn931873412 000739213 035__ $$aSP(OCoLC)931873412$$z(OCoLC)931807396$$z(OCoLC)932334399 000739213 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dIDEBK$$dN$T$$dYDXCP$$dEBLCP$$dDEBSZ$$dCDX$$dOCLCF 000739213 049__ $$aISEA 000739213 050_4 $$aQA612.7 000739213 08204 $$a514/.24$$223 000739213 24500 $$aNew trends in shape optimization$$h[electronic resource] /$$cAlso Pratelli, Günter Leugering. 000739213 264_1 $$aCham :$$bBirkhäuser,$$c2015. 000739213 300__ $$a1 online resource. 000739213 336__ $$atext$$btxt$$2rdacontent 000739213 337__ $$acomputer$$bc$$2rdamedia 000739213 338__ $$aonline resource$$bcr$$2rdacarrier 000739213 4901_ $$aInternational series of numerical mathematics ;$$v166 000739213 504__ $$aReferencesOn a Classical Spectral Optimization Problem in Linear Elasticity; 1 Introduction; 2 The Eigenvalue Problems; 3 Analyticity Results ; 4 Isovolumetric Perturbations; References; Metric Spaces of Shapes and Geometries Constructed from Set Parametrized Functions; 1 Introduction; 2 Group, Symmetric Difference, and Characteristic Functions; 2.1 Group Structure Induced by the Symmetric Difference; 2.2 Metric Structures via Characteristic Functions; 3 Parametrize Geometries by Functions: Hypographs; 4 Analytical Representations of Geometries; 4.1 Parametrize Geometries by Functions 000739213 504__ $$aReferencesA Phase Field Approach for Shape and Topology Optimization in Stokes Flow; 1 Introduction; 2 Porous Medium---Phase Field Formulation; 3 Sharp Interface Problem; 4 Sharp Interface Limit; References; An Overview on the Cheeger Problem; 1 Introduction; 2 Some Motivations; 2.1 Estimating the Smallest Eigenvalue of the Laplacian; 2.2 Existence of Graphs with Prescribed Mean Curvature; 2.3 Stable Shapes for Total Variation Minimization; 3 Some General Results on the Cheeger Problem; 3.1 The Cheeger Problem in Convex Domains; 3.2 Some Further Results About Cheeger Sets in mathbbR2 000739213 5050_ $$aIntroduction; On the Minimization of Area Among Chord-Convex Sets; 1 Introduction and Setting of the Problem; 2 Definitions and Results; 2.1 Uniqueness of the Bisecting Chord of Given Direction; 2.2 Properties of the Extreme Points and of the Intersections Between Chords; 2.3 Zindler Sets and Their Properties; References; Optimization Problems Involving the First Dirichlet Eigenvalue and the Torsional Rigidity; 1 Introduction; 2 Statement of the Problem; 3 A Sharp Inequality Between Torsion and First Eigenvalue; 4 The Attainable Set; 5 Torsional Rigidity and the Heat Equation 000739213 5058_ $$a4.2 Parametrize Functions by Geometries5 Metric Structures via Characteristic Functions of Measurable Sets; 5.1 Linfty-Convergence of Measurable Sets; 5.2 Lp-Convergence of Measurable Sets, 1lep<infty; 5.3 Compact Families; 6 Metric Structures via Distance Functions; 6.1 Pompéiu's Ecart Mutuel and Hausdorff Metric on Compact Sets; 6.2 Metric of Uniform Convergence; 6.3 Metric of Lipschitz Convergence; 6.4 Metric of W1,p-Convergence, 1lep<infty; 6.5 Metrics Compatible with the Abelian Group Structure; 7 Metric Structures via Oriented Distance Functions 000739213 5058_ $$a7.1 Oriented Distance Function: Definition and Some Properties7.2 Some General Metrics on Cb(D); 7.3 Metrics Compatible with the Abelian Group Structure; 8 Boundary Properties of Sets in Cb0(D); 8.1 Finite Perimeter or Caccioppoli Sets; 8.2 Preliminary Considerations; 8.3 Sets of Bounded Curvature; 8.4 Metrics for Families of Sets with Smooth Boundaries; 9 Sets of Positive Reach, Submanifolds, Squared Distance Functions; 9.1 Sets of Positive Reach; 9.2 Ck-Submanifolds, kge2; 9.3 Metric on Families of Submanifolds; 10 Metric Structure via the Support Function; 11 Some Concluding Remarks 000739213 506__ $$aAccess limited to authorized users. 000739213 588__ $$aOnline resource; title from PDF title page (viewed December 30, 2015) 000739213 650_0 $$aShape theory (Topology) 000739213 650_0 $$aMathematical optimization. 000739213 7001_ $$aPratelli, Aldo,$$eeditor. 000739213 7001_ $$aLeugering, Günter,$$d1953-$$eeditor. 000739213 77608 $$iPrint version:$$z3319175629$$z9783319175621$$w(OCoLC)905566642 000739213 830_0 $$aInternational series of numerical mathematics ;$$v166. 000739213 85280 $$bebk$$hSpringerLink 000739213 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-17563-8$$zOnline Access$$91397441.1 000739213 909CO $$ooai:library.usi.edu:739213$$pGLOBAL_SET 000739213 980__ $$aEBOOK 000739213 980__ $$aBIB 000739213 982__ $$aEbook 000739213 983__ $$aOnline 000739213 994__ $$a92$$bISE