000743929 000__ 04833cam\a2200397\i\4500 000743929 001__ 743929 000743929 005__ 20210515112314.0 000743929 006__ m\\\\\o\\d\\\\\\\\ 000743929 007__ cr\cn\nnnunnun 000743929 008__ 140625s2015\\\\si\a\\\\ob\\\\001\0\eng\d 000743929 020__ $$z9781118638729 000743929 020__ $$a9781118638750$$qelectronic book 000743929 035__ $$a(CaPaEBR)ebr10990965 000743929 035__ $$a(OCoLC)899007704 000743929 040__ $$aCaPaEBR$$beng$$erda$$epn$$cCaPaEBR 000743929 05014 $$aTJ174$$b.Y36 2015eb 000743929 08204 $$a621.8/16$$223 000743929 1001_ $$aYan, Jihong,$$eauthor. 000743929 24510 $$aMachinery prognostics and prognosis oriented maintenance management$$h[electronic resource] /$$cJihong Yan. 000743929 264_1 $$aSingapore :$$bWiley,$$c2015. 000743929 300__ $$a1 online resource (356 pages) :$$billustrations 000743929 336__ $$atext$$2rdacontent 000743929 337__ $$acomputer$$2rdamedia 000743929 338__ $$aonline resource$$2rdacarrier 000743929 504__ $$aIncludes bibliographical references and index. 000743929 5058_ $$aMachine generated contents note: Preface i Acknowledgements i Chapter 1 Introduction 7 1.1 Historical perspective 7 1.2 Diagnostic and prognostic system requirements 8 1.3 Need for prognostics and sustainability based maintenance management 9 1.4 Technical challenges in prognosis and sustainability based maintenance decision making 11 1.5 Data processing, prognostics and decision making 13 1.6 Sustainability based maintenance management 16 1.7 Future of prognostics based maintenance 19 References 20 Chapter 2 Data processing 21 2.1 Probability Distributions 21 2.2 Statistics on Unordered data 32 2.3 Statistics on Ordered Data 38 2.4 Technologies for incomplete data 39 References 428 Chapter 3 Signal processing 45 3.1 Introduction 45 3.2 Signal pre-processing 47 3.3 Techniques for signal processing 50 3.4 Real-time image feature extraction 72 3.5 Fusion or integration technologies 77 3.6 Statistical pattern recognition and data mining 80 3.7 Advanced technology for feature extraction 92 References 102 Chapter 4 Health monitoring and prognosis 110 4.1 Health monitoring as a concept 110 4.2 Degradation indices 111 4.3 Real-time monitoring 116 4.4 Failure prognosis 142 4.5 Physics-based prognosis models 155 4.6 Data-driven prognosis models 158 4.7 Hybrid prognosis models 162 Reference 165 Chapter 5 Prediction of residual service life 172 5.1 Formulation of problem 172 5.2 Methodology of probabilistic prediction 173 5.3 Dynamic life prediction using time series 180 5.4 Residual life prediction by crack-growth criterion 197 References 202 Chapter 6 Maintenance planning and scheduling 205 6.1 Strategic planning in maintenance 205 6.2 Maintenance scheduling 219 6.3 Scheduling techniques 232 6.4 Heuristic methodology for multi-unit system maintenance scheduling 261 References 266 Chapter 7 Prognosis incorporating maintenance decision making 270 7.1 The changing role of maintenance 270 7.2 Development of maintenance 272 7.3 Maintenance effects modeling 274 7.4 Modeling of optimization objective - maintenance cost 282 7.5 Prognosis oriented maintenance decision making 284 7.6 Maintenance decision making considering energy consumption 301 References 317 Chapter 8 Case studies 321 8.1 Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis 322 8.2 Ant colony clustering analysis based intelligent fault diagnosis method and its application to rotating machinery 329 8.3 BP Neural Networks Based Prognostic Methodology and Its Application 336 8.4 A Dynamic Multi-scale Markov Model Based Methodology for Remaining Life Prediction 343 8.5 A group technology based methodology for maintenance scheduling for hybrid shop 358 References 365 Index 369. 000743929 506__ $$aAccess limited to authorized users. 000743929 520__ $$a"This book gives a complete presentation of the basic essentials of machinery prognostics and prognosis oriented maintenance management, and takes a look at the cutting-edge discipline of intelligent failure prognosis technologies for condition-based maintenance. Latest research results and application methods are introduced for signal processing, reliability moelling, deterioration evaluation, residual life prediction and maintenance-optimization as well as applications of these methods"--$$cProvided by publisher. 000743929 588__ $$aDescription based on print version record. 000743929 650_0 $$aMachinery$$xMaintenance and repair. 000743929 650_0 $$aMachinery$$xService life. 000743929 650_0 $$aMachinery$$xReliability. 000743929 77608 $$iPrint version:$$aYan, Jihong.$$tMachinery prognostics and prognosis oriented maintenance management.$$dSingapore : Wiley, 2015$$z9781118638729$$w(DLC) 2014022259 000743929 852__ $$bebk 000743929 85640 $$3ProQuest Ebook Central Academic Complete$$uhttps://univsouthin.idm.oclc.org/login?url=http://site.ebrary.com/lib/usiricelib/Doc?id=10990965$$zOnline Access 000743929 909CO $$ooai:library.usi.edu:743929$$pGLOBAL_SET 000743929 980__ $$aEBOOK 000743929 980__ $$aBIB 000743929 982__ $$aEbook 000743929 983__ $$aOnline