Measures of symmetry for convex sets and stability [electronic resource] / by Gabor Toth.
2015
QA639.5
Linked e-resources
Linked Resource
Concurrent users
Unlimited
Authorized users
Authorized users
Document Delivery Supplied
Can lend chapters, not whole ebooks
Details
Title
Measures of symmetry for convex sets and stability [electronic resource] / by Gabor Toth.
Author
ISBN
9783319237336 electronic book
3319237330 electronic book
9783319237329
3319237322
3319237330 electronic book
9783319237329
3319237322
Published
Cham : Springer, 2015.
Language
English
Description
1 online resource (xii, 278 pages) : illustrations.
Item Number
10.1007/978-3-319-23733-6 doi
Call Number
QA639.5
Dewey Decimal Classification
516.1
Summary
This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set--measures of symmetry--and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric--the phenomenon of stability. By gathering the subject's core ideas and highlights around Grünbaum's general notion of measure of symmetry, it paints a coherent picture of the subject, and guides the reader from the basics to the state-of-the-art. The exposition takes various paths to results in order to develop the reader's grasp of the unity of ideas, while interspersed remarks enrich the material with a behind-the-scenes view of corollaries and logical connections, alternative proofs, and allied results from the literature. Numerous illustrations elucidate definitions and key constructions, and over 70 exercises--with hints and references for the more difficult ones--test and sharpen the reader's comprehension. The presentation includes: a basic course covering foundational notions in convex geometry, the three pillars of the combinatorial theory (the theorems of Carathéodory, Radon, and Helly), critical sets and Minkowski measure, the Minkowski-Radon inequality, and, to illustrate the general theory, a study of convex bodies of constant width; two proofs of F. John's ellipsoid theorem; a treatment of the stability of Minkowski measure, the Banach-Mazur metric, and Groemer's stability estimate for the Brunn-Minkowski inequality; important specializations of Grünbaum's abstract measure of symmetry, such as Winternitz measure, the Rogers-Shepard volume ratio, and Guo's Lp -Minkowski measure; a construction by the author of a new sequence of measures of symmetry, the kth mean Minkowski measure; and lastly, an intriguing application to the moduli space of certain distinguished maps from a Riemannian homogeneous space to spheres--illustrating the broad mathematical relevance of the book's subject.
Access Note
Access limited to authorized users.
Digital File Characteristics
text file PDF
Series
Universitext.
Available in Other Form
Print version: 9783319237329
Linked Resources
Record Appears in
Table of Contents
First Things First on Convex Sets
Affine Diameters and the Critical Set
Measures of Stability and Symmetry
Mean Minkowski Measures.
Affine Diameters and the Critical Set
Measures of Stability and Symmetry
Mean Minkowski Measures.