000751987 000__ 05832cam\a2200541Ii\4500 000751987 001__ 751987 000751987 005__ 20230306141349.0 000751987 006__ m\\\\\o\\d\\\\\\\\ 000751987 007__ cr\cn\nnnunnun 000751987 008__ 150928s2016\\\\sz\\\\\\ob\\\\001\0\eng\d 000751987 019__ $$a931591536$$a932333077 000751987 020__ $$a9783319204758$$q(electronic book) 000751987 020__ $$a3319204750$$q(electronic book) 000751987 020__ $$z9783319204741 000751987 0247_ $$a10.1007/978-3-319-20475-8$$2doi 000751987 035__ $$aSP(OCoLC)ocn922324120 000751987 035__ $$aSP(OCoLC)922324120$$z(OCoLC)931591536$$z(OCoLC)932333077 000751987 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dYDXCP$$dIDEBK$$dN$T$$dGW5XE$$dOCLCF$$dEBLCP$$dNUI$$dCOO$$dDEBSZ$$dOCLCQ 000751987 049__ $$aISEA 000751987 050_4 $$aTP159.M4 000751987 08204 $$a660/.28424$$223 000751987 1001_ $$aPaulen, Radoslav,$$eauthor. 000751987 24510 $$aOptimal operation of batch membrane processes$$h[electronic resource] /$$cRadoslav Paulen, Miroslav Fikar. 000751987 264_1 $$aCham :$$bSpringer,$$c[2016] 000751987 300__ $$a1 online resource. 000751987 336__ $$atext$$btxt$$2rdacontent 000751987 337__ $$acomputer$$bc$$2rdamedia 000751987 338__ $$aonline resource$$bcr$$2rdacarrier 000751987 4901_ $$aAdvances in industrial control,$$x1430-9491 000751987 504__ $$aIncludes bibliographical references and index. 000751987 5050_ $$aSeries Editors' Foreword; Preface; Acknowledgments; Contents; List of Figures; List of Tables; Nomenclature; 1 Membrane Processes; 1.1 Membrane Separation ; 1.1.1 Pore Sizes ; 1.1.2 Operation Modes ; 1.1.3 Modules; 1.1.4 Configurations ; 1.1.5 Fouling of Membranes ; 1.2 Mathematical Modelling of Membrane Processes; 1.3 Diafiltration Process ; 1.3.1 Process Model; 1.3.2 Fouling Models; 1.3.3 Operational Modes of Diafiltration; 1.3.4 Optimisation of Diafiltration Process; References; 2 Optimal Control Problem; 2.1 Objective Functional; 2.1.1 Typical Optimal Control Tasks; 2.2 Constraints. 000751987 5058_ $$a2.3 Process Model2.3.1 Linear Time-Invariant System; 2.3.2 Input Affine System; 2.4 Summary of Problem Definition; References; 3 Solution of Optimal Control Problems; 3.1 Necessary Conditions for Optimality; 3.2 Analytical Methods; 3.2.1 Calculus of Variations; 3.2.2 Dynamic Programming; 3.2.3 Pontryagin's Minimum Principle; 3.3 Numerical Methods; 3.3.1 Control Vector Iteration; 3.3.2 Boundary Condition Iteration; 3.3.3 Complete Discretisation ; 3.3.4 Control Vector Parametrisation; 3.3.5 Direct Multiple Shooting; 3.4 Methods for Computing Gradients. 000751987 5058_ $$a3.5 Feedback Strategies for Optimal ControlReferences; 4 Operation at Limiting Flux; 4.1 Process Model and Definition of Optimisation Problem; 4.1.1 Filtration Modes; 4.1.2 Optimisation Problem; 4.2 Optimal Operation; 4.2.1 Numerical Results; 4.2.2 Theoretical Results; 4.2.3 Discussion; 4.3 Case Studies; 4.3.1 Example 1; 4.3.2 Separation of Pectin from Sugar; 4.3.3 Purification of Soybean Water Extracts; 4.4 Models Derived from Limiting Flux; 4.4.1 Viscosity Dependent Mass Transfer Coefficient; 4.4.2 Osmotic Pressure Model; References; 5 Perfect Rejection of Both Solutes. 000751987 5058_ $$a5.1 Optimal Operation5.2 Case Studies; 5.2.1 Separation of Lactose from Proteins; 5.2.2 Albumin -- Ethanol Separation; References; 6 Perfect Rejection of Macro-Solute; 6.1 Optimal Operation; 6.2 Case Studies; 6.2.1 Dye -- Salt Separation; 6.2.2 Radiopaque -- Ethylene Glycol Separation; 6.2.3 Sucrose -- Sodium Chloride Separation; References; 7 Constant Incomplete Rejection of Solutes; 7.1 Optimal Operation; 7.2 Case Studies; 7.2.1 Extended Limiting Flux Model; 7.2.2 Three Component Separation; References; 8 General Membrane Model; 8.1 Optimal Operation; 8.2 Case Studies. 000751987 5058_ $$a8.2.1 Radiopaque -- Ethylene Glycol Separation8.2.2 Separation of Peptide from Trifluoroacetic Acid; References; 9 Conclusions and Future Research; 9.1 Discussion; 9.2 Conclusions; References; Index. 000751987 506__ $$aAccess limited to authorized users. 000751987 520__ $$aThis study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from the limiting flux model through increasingly generalized models to propose a simple numerical approach to the general case of optimal operation for batch diafiltration processes. Researchers interested in the modelling of batch processes or in the potential industrial applications of optimal control theory will find this monograph a valuable source of inspiration, instruction and ideas. 000751987 650_0 $$aMembranes (Technology) 000751987 650_0 $$aMembrane separation. 000751987 650_0 $$aChemical process control. 000751987 650_0 $$aAutomatic control. 000751987 7001_ $$aFikar, Miroslav,$$eauthor. 000751987 77608 $$iPrint version:$$aPaulen, Radoslav.$$tOptimal Operation of Batch Membrane Processes.$$dCham : Springer International Publishing, ©2015 000751987 830_0 $$aAdvances in industrial control. 000751987 852__ $$bebk 000751987 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-20475-8$$zOnline Access$$91397441.1 000751987 909CO $$ooai:library.usi.edu:751987$$pGLOBAL_SET 000751987 980__ $$aEBOOK 000751987 980__ $$aBIB 000751987 982__ $$aEbook 000751987 983__ $$aOnline 000751987 994__ $$a92$$bISE