000752633 000__ 05592cam\a2200517Ii\4500 000752633 001__ 752633 000752633 005__ 20230306141424.0 000752633 006__ m\\\\\o\\d\\\\\\\\ 000752633 007__ cr\cn\nnnunnun 000752633 008__ 151201s2016\\\\sz\\\\\\o\\\\\000\0\eng\d 000752633 019__ $$a931593228$$a932168953$$a932333677 000752633 020__ $$a9783319240589$$q(electronic book) 000752633 020__ $$a3319240587$$q(electronic book) 000752633 020__ $$z9783319240565 000752633 0247_ $$a10.1007/978-3-319-24058-9$$2doi 000752633 035__ $$aSP(OCoLC)ocn930703266 000752633 035__ $$aSP(OCoLC)930703266$$z(OCoLC)931593228$$z(OCoLC)932168953$$z(OCoLC)932333677 000752633 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dYDXCP$$dIDEBK$$dEBLCP$$dN$T$$dNUI$$dDEBSZ$$dCOO$$dCDX$$dGW5XE$$dOCLCF$$dOCLCQ 000752633 049__ $$aISEA 000752633 050_4 $$aQC793.3.S6 000752633 08204 $$a539.725$$223 000752633 1001_ $$aThiele, Stefan,$$eauthor. 000752633 24510 $$aRead-out and coherent manipulation of an isolated nuclear spin$$h[electronic resource] :$$busing a single-molecule magnet spin-transistor /$$cStefan Thiele. 000752633 264_1 $$aCham :$$bSpringer,$$c[2016] 000752633 264_4 $$c©2016 000752633 300__ $$a1 online resource. 000752633 336__ $$atext$$btxt$$2rdacontent 000752633 337__ $$acomputer$$bc$$2rdamedia 000752633 338__ $$aonline resource$$bcr$$2rdacarrier 000752633 347__ $$atext file$$bPDF$$2rda 000752633 4901_ $$aSpringer theses 000752633 500__ $$a"Doctoral thesis accepted by the University of Grenoble, France." 000752633 5050_ $$aSupervisor's Foreword; Abstract; Acknowledgements; Contents; 1 Introduction; 1.1 Molecular Spintronics; 1.2 Quantum Information Processing; 1.3 Thesis Outline; References; 2 Single Electron Transistor; 2.1 Equivalent Circuit; 2.2 Coulomb Blockade; 2.3 Cotunneling Effect; 2.4 Kondo Effect; References; 3 Magnetic Properties of TbPc2; 3.1 Structure of TbPc2; 3.2 Electronic Configuration of Tb3+; 3.3 Zeeman Effect; 3.4 Electron-Electron Interaction; 3.5 Spin-Orbit Interaction; 3.6 Ligand-Field Interaction; 3.7 Hyperfine Interaction; 3.8 Magnetization Reversal. 000752633 5058_ $$a3.8.1 Quantum Tunneling of Magnetization3.8.2 Direct Transtions; References; 4 Experimental Details; 4.1 Overview Setup; 4.2 Dilution Refrigerator; 4.3 3D Vector Magnet; 4.4 Current Leads; 4.5 Sample Holder; 4.6 Filter; 4.6.1 Low Frequency Filters; 4.6.2 High Frequency Filters; 4.7 Signal Transducer; 4.8 Real-Time Data Acquisition; 4.9 Sample Fabrication; 4.9.1 Nanowire Fabrication; 4.9.2 Electromigration; 4.9.3 Fabrication of a Molecular Spin Transistor; References; 5 Single-Molecule Magnet Spin-Transistor; 5.1 Mode of Operation; 5.2 Read-Out Quantum Dot. 000752633 5058_ $$a5.3 Magneto-Conductance and Anisotropy5.4 Exchange Coupling; 5.5 2D Magneto-Conductance of the Read-Out Dot; 5.6 Electronic Spin Relaxation; 5.7 Quantum Tunneling of Magnetization; 5.8 Summary; References; 6 Nuclear Spin Dynamics -- T1; 6.1 Signal Analysis; 6.2 Relaxation Time T1 and Read-Out Fidelity F; 6.3 Quantum Monte Carlo Simulations; 6.3.1 Algorithm; 6.3.2 Including the Experimental Boundaries; 6.4 Comparison Experiment -- Simulation; 6.4.1 Relaxation Mechanism; 6.4.2 Dynamical Equilibrium; 6.4.3 Selection Rules; 6.5 Summary; References; 7 Nuclear Spin Dynamics -- Tast2; 7.1 Introduction. 000752633 5058_ $$a7.1.1 Rabi Oscillations7.1.2 Hyperfine Stark Effect; 7.2 Coherent Nuclear Spin Rotations; 7.2.1 Frequency Calibration; 7.2.2 Rabi Oscillations; 7.3 Experimental Discussion of the Hyperfine Stark Effect; 7.3.1 DC Gate Voltage Induced Hyperfine Stark Effect; 7.3.2 AC Induced Hyperfine Stark Effect; 7.4 Theoretical Discussion of the Hyperfine Stark Effect; 7.5 Dephasing Time T*2; 7.5.1 Introduction; 7.5.2 Experimental Results; 7.5.3 Outlook; 7.6 Summary; References; 8 Conclusion and Outlook; References; Appendix ASpin; Appendix BStevens Operators; Appendix CQuantum Monte Carlo Code. 000752633 506__ $$aAccess limited to authorized users. 000752633 520__ $$aThis thesis sheds new light on the worldwide first electrical manipulation of a single nuclear spin. Over the last four decades, the size of a bit, the smallest logical unit in a computer, has decreased by more than two orders of magnitude and will soon reach a limit where quantum phenomena become important. Inspired by the power of quantum mechanics, researchers have already identified pure quantum systems, having, analog to a classical bit, two controllable and readable states. In this regard, the inherent spin of electrons or nuclei with its two eigenstates, spin up and spin down, is a promising candidate. Using expertise in the field of single-molecule magnets, the author developed a molecular transistor, which allows quantum information to be written onto a single nuclear spin by means of an electric field only, and, in addition, enables the electronic read-out of this quantum state. This novel approach opens a path to addressing and manipulating individual nuclear spins within a very confined space (a single molecule), at high speed. Thus, the author was able to show that single molecule magnets are promising candidates for quantum information processing, which is triggering a new field of research towards molecular quantum electronics. 000752633 588__ $$aOnline resource; title from PDF title page (viewed December 16, 2015). 000752633 650_0 $$aNuclear spin. 000752633 77608 $$iPrint version:$$aThiele, Stefan.$$tRead-Out and Coherent Manipulation of an Isolated Nuclear Spin : Using a Single-Molecule Magnet Spin-Transistor.$$dCham : Springer International Publishing, ©2015$$z9783319240565 000752633 830_0 $$aSpringer theses. 000752633 852__ $$bebk 000752633 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-24058-9$$zOnline Access$$91397441.1 000752633 909CO $$ooai:library.usi.edu:752633$$pGLOBAL_SET 000752633 980__ $$aEBOOK 000752633 980__ $$aBIB 000752633 982__ $$aEbook 000752633 983__ $$aOnline 000752633 994__ $$a92$$bISE