Resummation and renormalization in effective theories of particle physics [electronic resource] / Antal Jakovac, Andras Patkos.
2015
QC793.2
Linked e-resources
Linked Resource
Concurrent users
Unlimited
Authorized users
Authorized users
Document Delivery Supplied
Can lend chapters, not whole ebooks
Details
Title
Resummation and renormalization in effective theories of particle physics [electronic resource] / Antal Jakovac, Andras Patkos.
Author
ISBN
9783319226200 (electronic book)
3319226207 (electronic book)
9783319226194
3319226193
3319226207 (electronic book)
9783319226194
3319226193
Published
Cham : Springer, [2015].
Copyright
©2016
Language
English
Description
1 online resource.
Item Number
9783319226194
Call Number
QC793.2
Dewey Decimal Classification
539.7/2
Summary
Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to various effective models of chiral symmetry breaking in strong interactions and the BEH-mechanism of symmetry breaking in the electroweak theory. After introducing the basics of the functional integral formulation of quantum field theories and the derivation of different variants of the equations which determine the n-point functions, the text elaborates on the formulation of the optimized perturbation theory and the large-N expansion, as applied to the solution of these underlying equations in vacuum. The optimisation aspects of the 2PI approximation is discussed. Each of them is presented as a specific reorganisation of the weak coupling perturbation theory. The dimensional reduction of high temperature field theories is discussed from the same viewpoint. The renormalization program is described for each approach in detail and particular attention is paid to the appropriate interpretation of the notion of renormalization in the presence of the Landau singularity. Finally, results which emerge from the application of these techniques to the thermodynamics of strong and electroweak interactions are reviewed in detail.
Bibliography, etc. Note
Includes bibliographical references.
Access Note
Access limited to authorized users.
Source of Description
Online resource; title from PDF title page (SpringerLink, viewed December 22, 2015).
Added Author
Series
Lecture notes in physics ; volume 912.
Available in Other Form
Print version: 3319226193
Linked Resources
Record Appears in
Table of Contents
Effective Theories From Nuclear to Particle Physics
Finite Temperature Field Theories: Review
Divergences in the Perturbation Theory
Optimized Perturbation Theory
The Large-N Expansion
Dimensional Reduction and Infrared Improved Treatment of Finite Temperature Transitions
Thermodynamics of Strong Matter
Finite Temperature Restoration of the Brout-Englert-Higgs Effect
The Spectral Function.- Computation of the Basic Diagrams
Integrals Relevant for Dimensional Reduction.
Finite Temperature Field Theories: Review
Divergences in the Perturbation Theory
Optimized Perturbation Theory
The Large-N Expansion
Dimensional Reduction and Infrared Improved Treatment of Finite Temperature Transitions
Thermodynamics of Strong Matter
Finite Temperature Restoration of the Brout-Englert-Higgs Effect
The Spectral Function.- Computation of the Basic Diagrams
Integrals Relevant for Dimensional Reduction.