000752849 000__ 03918cam\a2200517Mi\4500 000752849 001__ 752849 000752849 005__ 20230306141437.0 000752849 006__ m\\\\\o\\d\\\\\\\\ 000752849 007__ cr\nn\nnnunnun 000752849 008__ 151109s2016\\\\gw\a\\\\od\\\\001\0\eng\d 000752849 019__ $$a928714162$$a930041212 000752849 020__ $$a9783319229577$$q(electronic book) 000752849 020__ $$a3319229575$$q(electronic book) 000752849 020__ $$z9783319229560 000752849 020__ $$z3319229567 000752849 0247_ $$a10.1007/978-3-319-22957-7$$2doi 000752849 035__ $$aSP(OCoLC)ocn932168505 000752849 035__ $$aSP(OCoLC)932168505$$z(OCoLC)928714162$$z(OCoLC)930041212 000752849 040__ $$aNUI$$beng$$cNUI$$dOCLCO$$dYDXCP$$dAZU$$dN$T$$dIDEBK$$dCDX$$dN$T$$dGW5XE 000752849 049__ $$aISEA 000752849 050_4 $$aTK5102.9 000752849 050_4 $$aTA1637-1638 000752849 050_4 $$aTK7882.S65 000752849 08204 $$a621.382$$223 000752849 24500 $$aRiemannian Computing in Computer Vision$$h[electronic resource] /$$cedited by Pavan K. Turaga, Anuj Srivastava. 000752849 264_1 $$aCham :$$bSpringer,$$c2016. 000752849 300__ $$a1 online resource (vi, 391 pages) :$$billustrations. 000752849 336__ $$atext$$btxt$$2rdacontent 000752849 337__ $$acomputer$$bc$$2rdamedia 000752849 338__ $$aonline resource$$bcr$$2rdacarrier 000752849 347__ $$atext file$$bPDF$$2rda 000752849 500__ $$aIncludes index. 000752849 5050_ $$aWelcome to Riemannian Computing in Computer Vision -- Recursive Computation of the Fŕechet Mean on Non-Positively Curved Riemannian Manifolds with Applications -- Kernels on Riemannian Manifolds -- Canonical Correlation Analysis on SPD(n) manifolds -- Probabilistic Geodesic Models for Regression and Dimensionality Reduction on Riemannian Manifolds -- Robust Estimation for Computer Vision using Grassmann Manifolds -- Motion Averaging in 3D Reconstruction Problems -- Lie-Theoretic Multi-Robot Localization -- CovarianceWeighted Procrustes Analysis -- Elastic Shape Analysis of Functions, Curves and Trajectories -- Why Use Sobolev Metrics on the Space of Curves -- Elastic Shape Analysis of Surfaces and Images -- Designing a Boosted Classifier on Riemannian Manifolds -- A General Least Squares Regression Framework on Matrix Manifolds for Computer Vision -- Domain Adaptation Using the Grassmann Manifold -- Coordinate Coding on the Riemannian Manifold of Symmetric Positive Definite Matrices for Image Classification -- Summarization and Search over Geometric Spaces. 000752849 506__ $$aAccess limited to authorized users. 000752849 520__ $$aThis book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours). · Illustrates Riemannian computing theory on applications in computer vision, machine learning, and robotics · Emphasis on algorithmic advances that will allow re-application in other contexts · Written by leading researchers in computer vision and Riemannian computing, from universities and industry. 000752849 650_0 $$aComputer vision$$xMathematics. 000752849 650_0 $$aEngineering. 000752849 650_0 $$aImage processing. 000752849 650_0 $$aEngineering mathematics. 000752849 7001_ $$aTuraga, Pavan K.$$eeditor. 000752849 7001_ $$aSrivastava, Anuj.$$eeditor. 000752849 77608 $$iPrint version:$$z9783319229560 000752849 852__ $$bebk 000752849 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-22957-7$$zOnline Access$$91397441.1 000752849 909CO $$ooai:library.usi.edu:752849$$pGLOBAL_SET 000752849 980__ $$aEBOOK 000752849 980__ $$aBIB 000752849 982__ $$aEbook 000752849 983__ $$aOnline 000752849 994__ $$a92$$bISE