000752892 000__ 05276cam\a2200589Mi\4500 000752892 001__ 752892 000752892 005__ 20230306141439.0 000752892 006__ m\\\\\o\\d\\\\\\\\ 000752892 007__ cr\nn\nnnunnun 000752892 008__ 151120s2016\\\\gw\\\\\\od\\\\000\0\eng\d 000752892 019__ $$a930268827$$a935248096 000752892 020__ $$a9783662486764$$q(electronic book) 000752892 020__ $$a3662486768$$q(electronic book) 000752892 020__ $$z9783662486740 000752892 020__ $$z3662486741 000752892 0247_ $$a10.1007/978-3-662-48676-4$$2doi 000752892 035__ $$aSP(OCoLC)ocn932170806 000752892 035__ $$aSP(OCoLC)932170806$$z(OCoLC)930268827$$z(OCoLC)935248096 000752892 040__ $$aNUI$$beng$$cNUI$$dOCLCO$$dCOO$$dOCLCF$$dN$T$$dIDEBK$$dYDXCP$$dGW5XE$$dEBLCP 000752892 049__ $$aISEA 000752892 050_4 $$aT174.7 000752892 050_4 $$aTA418.9.N35 000752892 08204 $$a620.115$$223 000752892 1001_ $$aChen, Cheng-Meng.$$eauthor. 000752892 24510 $$aSurface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage$$h[electronic resource] /$$cby Cheng-Meng Chen. 000752892 264_1 $$aHeidelberg :$$bSpringer,$$c2016. 000752892 300__ $$a1 online resource (xiii, 146 pages) :$$billustrations. 000752892 336__ $$atext$$btxt$$2rdacontent 000752892 337__ $$acomputer$$bc$$2rdamedia 000752892 338__ $$aonline resource$$bcr$$2rdacarrier 000752892 347__ $$atext file$$bPDF$$2rda 000752892 4901_ $$aSpringer Theses,$$x2190-5053 000752892 5050_ $$aParts of this thesis have been published in the following journal articles:; Supervisors' Foreword; Acknowledgments; Contents; 1 Literature Review and Research Background; 1.1 Introduction to Graphene; 1.2 Summary of Graphene Preparation Methods; 1.3 The Synthesis and Structure of Graphite Oxide; 1.4 The Formation of Reduced Graphene Oxide; 1.4.1 Thermal Annealing; 1.4.2 Chemical Reduction; 1.5 Application Prospect of Reduced Graphene; 1.5.1 Paper/Membrane-Like Materials; 1.5.1.1 Graphite Oxide Paper; 1.5.1.2 Electric-Conductive Reduced Graphene Paper; 1.5.1.3 Transparent Conducting Film 000752892 5058_ $$a1.5.2 Energy Storage Materials1.5.2.1 Supercapacitor; 1.5.2.2 Li-Ion Cell; 1.5.3 Other Applications; 1.6 The Proposal of the Topic and the Main Research Contents; References; 2 Structural Evolution of the Thermally Reduced Graphene NanosheetsDuring Annealing; 2.1 Introduction; 2.2 Experimental; 2.2.1 Preparation of TRG; 2.2.2 Sample Characterization; 2.2.3 Electrochemical Measurements; 2.3 Results and Discussion; 2.3.1 Structural Evolution; 2.3.2 Electrochemical Performance; 2.4 Conclusions; References; 3 Hierarchical Amination of Graphene for Electrochemical Energy Storage; 3.1 Introduction 000752892 5058_ $$a3.2 Experimental3.2.1 Preparation of Hierarchically Aminated Graphene; 3.2.2 Sample Characterization; 3.2.3 Electrochemical Measurements; 3.3 Results and Discussion; 3.3.1 The Microstructure of AGHs; 3.3.2 The Surface Chemistry of AGHs; 3.3.3 The Electrochemical Capacitance of AGH; 3.4 Conclusions; References; 4 Free-Standing Graphene Film with High Conductivity by Thermal Reduction of Self-assembled Graphene Oxide Film ; 4.1 Introduction; 4.2 Experimental; 4.3 Results and Discussion; 4.4 Conclusions; References 000752892 5058_ $$a5 Template-Directed Macroporous 'Bubble' Graphene Film for the Application in Supercapacitors5.1 Introduction; 5.2 Experimental; 5.2.1 Synthesis of PMMA Latex Spheres; 5.2.2 Hard Template Route for Macroporous Graphene Film; 5.2.3 Structural Characterization; 5.2.4 Electrochemical Measurements; 5.3 Results and Discussion; 5.4 Conclusions; References; 6 SnO2@Graphene Composite Electrodes for the Application in Electrochemical Energy Storage; 6.1 Introduction; 6.2 Experimental; 6.2.1 Pre-graphenization: SnO2@TRG Hybirds; 6.2.2 Post-graphenization: SnO2@CRG Hybrids; 6.2.3 Sample Characterization 000752892 5058_ $$a6.2.4 Li-Ion Battery Performance Measurements6.2.5 Supercapacitor Performance Measurements; 6.3 Results and Discussion; 6.3.1 Pre-graphenization: Structure of TRG and SnO2@TRG Hybrids; 6.3.2 Post-graphenization: Structure of SnO2@CRG Hybrids; 6.3.3 Electrochemcial Performance; 6.3.3.1 Li-Ion Battery; 6.3.3.2 Supercapacitor; 6.4 Conclusions; References; 7 Main Conclusions and Plan of Further Work; 7.1 Conclusions; 7.2 Primary Innovation Points; 7.3 Planning of Future Work 000752892 506__ $$aAccess limited to authorized users. 000752892 520__ $$aThis PhD thesis presents the latest findings on the tunable surface chemistry of graphene/graphene oxide by systematically investigating the tuning of oxygen and nitrogen containing functional groups using an innovative carbonization and ammonia treatment. In addition, novel macroscopic assemblies or hybrids of graphene were produced, laying the theoretical foundation for developing graphene-based energy storage devices. This work will be of interest to university researchers, R&D engineers and graduate students working with carbon materials, energy storage and nanotechnology. 000752892 650_0 $$aMaterials science. 000752892 650_0 $$aEnergy storage. 000752892 650_0 $$aChemistry, Inorganic. 000752892 650_0 $$aSurfaces (Physics) 000752892 650_0 $$aInterfaces (Physical sciences) 000752892 650_0 $$aThin films. 000752892 650_0 $$aNanotechnology. 000752892 77608 $$iPrint version:$$z9783662486740 000752892 830_0 $$aSpringer theses. 000752892 852__ $$bebk 000752892 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-48676-4$$zOnline Access$$91397441.1 000752892 909CO $$ooai:library.usi.edu:752892$$pGLOBAL_SET 000752892 980__ $$aEBOOK 000752892 980__ $$aBIB 000752892 982__ $$aEbook 000752892 983__ $$aOnline 000752892 994__ $$a92$$bISE