000754242 000__ 05860cam\a2200505Ii\4500 000754242 001__ 754242 000754242 005__ 20230306141657.0 000754242 006__ m\\\\\o\\d\\\\\\\\ 000754242 007__ cr\cn\nnnunnun 000754242 008__ 160318s2016\\\\sz\\\\\\ob\\\\000\0\eng\d 000754242 020__ $$a9783034809399$$q(electronic book) 000754242 020__ $$a3034809395$$q(electronic book) 000754242 020__ $$z9783034809382 000754242 0247_ $$a10.1007/978-3-0348-0939-9$$2doi 000754242 035__ $$aSP(OCoLC)ocn945095018 000754242 035__ $$aSP(OCoLC)945095018 000754242 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dGW5XE$$dIDEBK$$dEBLCP$$dCDX$$dAZU$$dYDXCP$$dOCLCF$$dCOO 000754242 049__ $$aISEA 000754242 050_4 $$aTA342 000754242 08204 $$a620.0011$$223 000754242 24500 $$aRecent developments of mathematical fluid mechanics$$h[electronic resource] /$$cedited by Herbert Amann ... [and others]. 000754242 264_1 $$aBasel :$$bSpringer,$$c2016. 000754242 300__ $$a1 online resource. 000754242 336__ $$atext$$btxt$$2rdacontent 000754242 337__ $$acomputer$$bc$$2rdamedia 000754242 338__ $$aonline resource$$bcr$$2rdacarrier 000754242 4901_ $$aAdvances in mathematical fluid mechanics 000754242 504__ $$aIncludes bibliographical references. 000754242 5050_ $$aThe Work of Yoshihiro Shibata, Herbert Amann, Yoshikazu Giga, Hisashi Okamoto, Hideo Kozono and Masao Yamazaki -- Existence of weak solutions for a diffuse interface model of power-law type two-phase flows, Helmut Abels, Lars Diening and Yutaka Terasawa -- Stationary Solutions for a Navier-Stokes/Cahn- Hilliard System with Singular Free Energies, Helmut Abels and Josef Weber -- Parabolic Equations on Uniformly Regular Riemannian Manifolds and Degenerate Initial Boundary Value Problems, Herbert Amann -- A generalization of some regularity criteria to the Navier-Stokes equations involving one velocity component, Simon Axmann and Milan Pokorny -- On the singular p-Laplacian system under Navier slip type boundary conditions, The gradient-symmetric case, H. Beirão da Veiga -- Thermodynamically consistent modeling for dissolution/growth of bubbles in an incompressible solvent, Dieter Bothe and Kohei Soga -- On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, Miroslav Bulíček and Josef Málek -- Inhomogeneous boundary value problems in spaces of higher regularity,Robert Denk and Tim Seger -- Blow-up criterion for 3D Navier-Stokes equations and Landau-Lifshitz System in a bounded domain, Jishan Fan and Tohru Ozawa -- Local Regularity Results for the Instationary Navier-Stokes Equations Based on Besov Space Type Criteria, Reinhard Farwig -- On global well/ill-posedness of the Euler-Poisson system, Eduard Feireisl -- On the Motion of a Liquid-Filled Rigid Body Subject to a Time-Periodic Torque, Giovanni P. Galdi, Giusy Mazzone and Mahdi Mohebbi -- Seeking a proof of Xie's inequality: on the conjecture that m ! 1, John G. Heywood -- Bounded Analyticity of the Stokes Semigroup on Spaces of Bounded Functions, Matthias Hieber and Paolo Maremonti -- On the weak solution of the fluid-structure interaction problem for sheardependent fluids, Anna Hundertmark, Mária Lukáčová-Medvid'ová and Sárka Nečasová -- Stability of time periodic solutions for the rotating Navier-Stokes equations, Tsukasa Iwabuchi, Alex Mahalov and Ryo Takada -- Weighted Lp -- Lq estimates of Stokes semigroup in half-space and its application to the Navier-Stokes equations,Takayuki Kobayashi and Takayuki Kubo -- On vorticity formulation for viscous incompressible flows in R3+, Humiya Kosaka and Yasunori Maekawa -- A Weak Solution to the Navier-Stokes System with Navier's Boundary Condition in a Time-Varying Domain, Jiří Neustupa and Patrick Penel -- Effects of fluid-boundary interaction on the stability of boundary layers in plasma physics, Masashi Ohnawa -- On Incompressible Two-Phase Flows with Phase Transitions and Variable Surface Tension, Masao Yamazaki. 000754242 506__ $$aAccess limited to authorized users. 000754242 520__ $$aThe book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered: 1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics. For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations. There are 24 articles in this book in which the nonlinear PDE arising in the fluid mechanics are mainly discussed. The authors consist of speakers and participants of the "International Conference on the Mathematical Fluid Dynamics" on the occasion of Professor Yoshihiro Shibatas 60th birthday held on March 5--9 in 2013 at old capital city Nara, Japan. 000754242 650_0 $$aFluid mechanics$$xMathematical models. 000754242 650_0 $$aMathematics. 000754242 650_0 $$aMathematical models. 000754242 7001_ $$aAmann, H.$$q(Herbert),$$d1938-$$eeditor. 000754242 7001_ $$aGiga, Yoshikazu,$$eeditor. 000754242 7001_ $$aKozono, Hideo,$$eeditor. 000754242 7001_ $$aOkamoto, Hisashi,$$eeditor. 000754242 7001_ $$aYamazaki, Masao,$$eeditor. 000754242 77608 $$iPrint version:$$z9783034809382 000754242 830_0 $$aAdvances in mathematical fluid mechanics. 000754242 852__ $$bebk 000754242 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-0348-0939-9$$zOnline Access$$91397441.1 000754242 909CO $$ooai:library.usi.edu:754242$$pGLOBAL_SET 000754242 980__ $$aEBOOK 000754242 980__ $$aBIB 000754242 982__ $$aEbook 000754242 983__ $$aOnline 000754242 994__ $$a92$$bISE