000754465 000__ 02913cam\a2200469Ii\4500 000754465 001__ 754465 000754465 005__ 20230306141709.0 000754465 006__ m\\\\\o\\d\\\\\\\\ 000754465 007__ cr\cn\nnnunnun 000754465 008__ 160331s2016\\\\sz\a\\\\ob\\\\001\0\eng\d 000754465 020__ $$a9783319305189$$q(electronic book) 000754465 020__ $$a3319305182$$q(electronic book) 000754465 020__ $$z9783319305165 000754465 0247_ $$a10.1007/978-3-319-30518-9$$2doi 000754465 035__ $$aSP(OCoLC)ocn945735480 000754465 035__ $$aSP(OCoLC)945735480 000754465 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dN$T$$dYDXCP$$dGW5XE$$dIDEBK$$dEBLCP$$dOCLCQ$$dUPM$$dOCLCF$$dCOO 000754465 049__ $$aISEA 000754465 050_4 $$aQA166.247 000754465 08204 $$a511.56$$223 000754465 1001_ $$aZhang, Ping,$$d1957-$$eauthor. 000754465 24512 $$aA Kaleidoscopic view of graph colorings$$h[electronic resource] /$$cPing Zhang. 000754465 264_1 $$aSwitzerland :$$bSpringer,$$c[2016] 000754465 300__ $$a1 online resource :$$billustrations. 000754465 336__ $$atext$$btxt$$2rdacontent 000754465 337__ $$acomputer$$bc$$2rdamedia 000754465 338__ $$aonline resource$$bcr$$2rdacarrier 000754465 4901_ $$aSpringerBriefs in mathematics 000754465 504__ $$aIncludes bibliographical references and index. 000754465 5050_ $$a1. Introduction -- 2. Binomial Edge Colorings -- 3. Kaleidoscopic Edge Colorings -- 4. Graceful Vertex Colorings -- 5.Harmonious Vertex Colorings -- 6. A Map Coloring Problem -- 7. Set Colorings -- 8. Multiset Colorings -- 9. Metric Colorings -- 10. Sigma Colorings -- 11. Modular Colorings -- 12. A Banquet Seating Problem -- 13. Irregular Colorings -- 14. Recognizable Colorings -- References -- Index. . 000754465 506__ $$aAccess limited to authorized users. 000754465 520__ $$aThis book describes kaleidoscopic topics that have developed in the area of graph colorings. Unifying current material on graph coloring, this book describes current information on vertex and edge colorings in graph theory, including harmonious colorings, majestic colorings, kaleidoscopic colorings and binomial colorings. Recently there have been a number of breakthroughs in vertex colorings that give rise to other colorings in a graph, such as graceful labelings of graphs that have been reconsidered under the language of colorings. The topics presented in this book include sample detailed proofs and illustrations, which depicts elements that are often overlooked. This book is ideal for graduate students and researchers in graph theory, as it covers a broad range of topics and makes connections between recent developments and well-known areas in graph theory. 000754465 588__ $$aOnline resource; title from PDF title page (viewed April 4, 2016). 000754465 650_0 $$aGraph coloring. 000754465 650_0 $$aFour-color problem. 000754465 650_0 $$aGraph theory. 000754465 77608 $$iPrint version:$$z9783319305165 000754465 830_0 $$aSpringerBriefs in mathematics. 000754465 852__ $$bebk 000754465 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-30518-9$$zOnline Access$$91397441.1 000754465 909CO $$ooai:library.usi.edu:754465$$pGLOBAL_SET 000754465 980__ $$aEBOOK 000754465 980__ $$aBIB 000754465 982__ $$aEbook 000754465 983__ $$aOnline 000754465 994__ $$a92$$bISE