000755963 000__ 03465cam\a2200493Ii\4500 000755963 001__ 755963 000755963 005__ 20230306141822.0 000755963 006__ m\\\\\o\\d\\\\\\\\ 000755963 007__ cr\cn\nnnunnun 000755963 008__ 160617s2016\\\\gw\a\\\\ob\\\\000\0\eng\d 000755963 020__ $$a9783658143190$$q(electronic book) 000755963 020__ $$a3658143193$$q(electronic book) 000755963 020__ $$z9783658143183 000755963 035__ $$aSP(OCoLC)ocn951809576 000755963 035__ $$aSP(OCoLC)951809576 000755963 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dYDXCP$$dGW5XE$$dAZU$$dN$T$$dCOO 000755963 041__ $$aeng$$ager 000755963 049__ $$aISEA 000755963 05004 $$aQH324.25 000755963 08204 $$a570.285/63$$223 000755963 1001_ $$aFeldbauer, Roman,$$eauthor. 000755963 24510 $$aMachine learning for microbial phenotype prediction$$h[electronic resource] /$$cRoman Feldbauer. 000755963 264_1 $$aWiesbaden :$$bSpringerSpektrum,$$c2016. 000755963 300__ $$a1 online resource (xiii, 110 pages) :$$billustrations. 000755963 336__ $$atext$$btxt$$2rdacontent 000755963 337__ $$acomputer$$bc$$2rdamedia 000755963 338__ $$aonline resource$$bcr$$2rdacarrier 000755963 4901_ $$aBestMasters 000755963 504__ $$aIncludes bibliographical references. 000755963 5050_ $$aMicrobial Genotypes and Phenotypes -- Basics of Machine Learning -- Phenotype Prediction Packages -- A Model for Intracellular Lifestyle. 000755963 506__ $$aAccess limited to authorized users. 000755963 520__ $$aThis thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomic studies. Unraveling relationships between a living organism's genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data. Contents Microbial Genotypes and Phenotypes Basics of Machine Learning Phenotype Prediction Packages A Model for Intracellular Lifestyle Target Groups Teachers and students in the fields of bioinformatics, molecular biology and microbiology Executives and specialists in the field of microbiology, computational biology and machine learning About the Author Roman Feldbauer is currently employed at the Austrian Research Institute for Artificial Intelligence (OFAI) and PhD student at the University of Vienna. His research interests are machine learning, data science, bioinformatics, comparative genomics and neuroscience. In one of his current projects he investigates large biological databases in regard to the "curse of dimensionality". . 000755963 546__ $$aIn English and German. 000755963 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 23, 2016). 000755963 650_0 $$aArtificial intelligence$$xBiological applications. 000755963 650_0 $$aMachine learning. 000755963 650_0 $$aComparative genomics$$xData processing. 000755963 650_0 $$aPhenotype. 000755963 77608 $$iPrint version:$$aFeldbauer, Roman.$$tMachine learning for microbial phenotype prediction.$$dWiesbaden, [Germany] : Springer Spektrum, c2016$$z9783658143183$$w(DLC) 2016940340 000755963 830_0 $$aBestMasters. 000755963 852__ $$bebk 000755963 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-658-14319-0$$zOnline Access$$91397441.1 000755963 909CO $$ooai:library.usi.edu:755963$$pGLOBAL_SET 000755963 980__ $$aEBOOK 000755963 980__ $$aBIB 000755963 982__ $$aEbook 000755963 983__ $$aOnline 000755963 994__ $$a92$$bISE