Linked e-resources
Details
Table of Contents
Preface; Contents; Contributors; About the Editors; Chapter 1: Next-Generation Nanostructured Lithium-Ion Cathode Materials: Critical Challenges for New Directions in RandD; 1.1 Introduction; 1.2 Layered Compounds (LiMO2); 1.2.1 LiNi0.5Mn0.5O2; 1.2.2 LiNi1/3Co1/3Mn1/3O2 (NCM); 1.2.3 LiNi0.8Co0.15Al0.05O2 (NCA); 1.2.4 xLi2MnO3 (1-x)LiMO2 (M=Transition Metals); 1.3 Spinel Compounds; 1.3.1 LiMn2O4 (LMO); 1.3.2 High-Voltage LiMn1.5Ni0.5O4 (LMNO); 1.4 Olivine Compounds (LiMPO4); 1.5 Summary and Future Prospects; References
Chapter 2: Li2MnSiO4 Nanostructured Cathodes for Rechargeable Lithium-Ion Batteries2.1 Introduction; 2.2 The Attraction of Li2MnSiO4 as a Lithium-Ion Battery Cathode; 2.3 Challenges of Lithium Manganese Orthosilicate (Li2MnSiO4) Cathodes; 2.3.1 Multiple Structural Forms; 2.3.2 Low Lithium-Ion Diffusion Rates; 2.3.3 Low Electronic Conductivity; 2.3.4 Volumetric Changes and Amorphization; 2.4 Advantages of Nanostructuring Li2MnSiO4 Cathodes; 2.4.1 Carbon Coating; 2.4.2 Maximizing the Surface Area; 2.4.3 Reducing the Lithium-Ion Diffusion Length
2.5 Synthesis and Electrochemistry of Nanostructured Li2MnSiO42.5.1 Pechini Sol-Gel Synthesis; 2.5.2 Alternative Sol-Gel Routes; 2.5.3 Solution Synthesis; 2.5.4 Polyol Synthesis; 2.5.5 Hydrothermal Synthesis; 2.5.6 Molten Carbonate Flux Synthesis; 2.5.7 Supercritical Solvothermal Synthesis; 2.5.7.1 Monodisperse Li2MnSiO4 Particles; 2.5.7.2 Nanosheet Morphology; 2.5.7.3 The Use of Surfactants to Create Complex Nanostructures; 2.5.8 Using Carbon Supports; 2.5.8.1 Reduced Graphene Oxide Networks; 2.5.8.2 Electrospinning to Form Li2MnSiO4/Carbon Nanofiber Cathodes
2.5.9 Macroporous and Mesoporous Structures2.5.9.1 Mesoporous, Carbon-Supported Li2MnSiO4; 2.5.9.2 Mesoporous Cathodes from a Mesoporous Silica Template; 2.5.9.3 Hierarchical Macroporous and Microporous Li2MnSiO4; 2.6 Spray Pyrolysis; 2.7 Conclusion; References; Chapter 3: Metal Oxides and Lithium Alloys as Anode Materials for Lithium-Ion Batteries; 3.1 Introduction; 3.2 Lithium Intercalation/Deintercalation Reaction-Based Anode Materials; 3.2.1 Titanium-Based Oxides; 3.2.1.1 Spinel Li4Ti5O12 (LTO); 3.2.1.2 Titanium Dioxide (TiO2); TiO2 anatase; TiO2 rutile; TiO2 brookite
3.3 Alloying-Dealloying Reaction-Based Anodes3.3.1 Binary Tin Oxides; 3.3.1.1 Tin Dioxide, SnO2; 3.3.1.2 Tin Monoxide, SnO; 3.3.2 Ternary Tin Oxides, MxSnOy; 3.4 Conversion (Redox) Reaction-Based Anodes; 3.4.1 Transition Metal Oxides with Rock Salt Structure (TMO; , Fe, Co, Ni, or Cu); 3.4.2 Transition Metal Oxides with Spinel Structure (TM3O4, , Fe, or Mn); 3.5 Lithium Alloys; 3.5.1 Silicon; 3.5.2 Tin, Sn; 3.6 Summary and Future Perspective; References; Chapter 4: Sn-Based Alloy Anode Materials for Lithium-Ion Batteries: Preparation, Multi-scale Structure, and Performance; 4.1 Introduction
Chapter 2: Li2MnSiO4 Nanostructured Cathodes for Rechargeable Lithium-Ion Batteries2.1 Introduction; 2.2 The Attraction of Li2MnSiO4 as a Lithium-Ion Battery Cathode; 2.3 Challenges of Lithium Manganese Orthosilicate (Li2MnSiO4) Cathodes; 2.3.1 Multiple Structural Forms; 2.3.2 Low Lithium-Ion Diffusion Rates; 2.3.3 Low Electronic Conductivity; 2.3.4 Volumetric Changes and Amorphization; 2.4 Advantages of Nanostructuring Li2MnSiO4 Cathodes; 2.4.1 Carbon Coating; 2.4.2 Maximizing the Surface Area; 2.4.3 Reducing the Lithium-Ion Diffusion Length
2.5 Synthesis and Electrochemistry of Nanostructured Li2MnSiO42.5.1 Pechini Sol-Gel Synthesis; 2.5.2 Alternative Sol-Gel Routes; 2.5.3 Solution Synthesis; 2.5.4 Polyol Synthesis; 2.5.5 Hydrothermal Synthesis; 2.5.6 Molten Carbonate Flux Synthesis; 2.5.7 Supercritical Solvothermal Synthesis; 2.5.7.1 Monodisperse Li2MnSiO4 Particles; 2.5.7.2 Nanosheet Morphology; 2.5.7.3 The Use of Surfactants to Create Complex Nanostructures; 2.5.8 Using Carbon Supports; 2.5.8.1 Reduced Graphene Oxide Networks; 2.5.8.2 Electrospinning to Form Li2MnSiO4/Carbon Nanofiber Cathodes
2.5.9 Macroporous and Mesoporous Structures2.5.9.1 Mesoporous, Carbon-Supported Li2MnSiO4; 2.5.9.2 Mesoporous Cathodes from a Mesoporous Silica Template; 2.5.9.3 Hierarchical Macroporous and Microporous Li2MnSiO4; 2.6 Spray Pyrolysis; 2.7 Conclusion; References; Chapter 3: Metal Oxides and Lithium Alloys as Anode Materials for Lithium-Ion Batteries; 3.1 Introduction; 3.2 Lithium Intercalation/Deintercalation Reaction-Based Anode Materials; 3.2.1 Titanium-Based Oxides; 3.2.1.1 Spinel Li4Ti5O12 (LTO); 3.2.1.2 Titanium Dioxide (TiO2); TiO2 anatase; TiO2 rutile; TiO2 brookite
3.3 Alloying-Dealloying Reaction-Based Anodes3.3.1 Binary Tin Oxides; 3.3.1.1 Tin Dioxide, SnO2; 3.3.1.2 Tin Monoxide, SnO; 3.3.2 Ternary Tin Oxides, MxSnOy; 3.4 Conversion (Redox) Reaction-Based Anodes; 3.4.1 Transition Metal Oxides with Rock Salt Structure (TMO; , Fe, Co, Ni, or Cu); 3.4.2 Transition Metal Oxides with Spinel Structure (TM3O4, , Fe, or Mn); 3.5 Lithium Alloys; 3.5.1 Silicon; 3.5.2 Tin, Sn; 3.6 Summary and Future Perspective; References; Chapter 4: Sn-Based Alloy Anode Materials for Lithium-Ion Batteries: Preparation, Multi-scale Structure, and Performance; 4.1 Introduction