000760246 000__ 04819cam\a2200517Mi\4500 000760246 001__ 760246 000760246 005__ 20230306142108.0 000760246 006__ m\\\\\o\\d\\\\\\\\ 000760246 007__ cr\un\nnnunnun 000760246 008__ 160901s2016\\\\sz\\\\\\o\\\\\000\0\eng\d 000760246 019__ $$a957464860$$a957607622$$a957680526$$a957740169$$a959595642$$a961002348$$a961250343 000760246 020__ $$a9783319412467$$q(electronic book) 000760246 020__ $$a3319412469$$q(electronic book) 000760246 020__ $$z9783319412450 000760246 020__ $$z3319412450 000760246 0247_ $$a10.1007/978-3-319-41246-7$$2doi 000760246 035__ $$aSP(OCoLC)ocn959802890 000760246 035__ $$aSP(OCoLC)959802890$$z(OCoLC)957464860$$z(OCoLC)957607622$$z(OCoLC)957680526$$z(OCoLC)957740169$$z(OCoLC)959595642$$z(OCoLC)961002348$$z(OCoLC)961250343 000760246 040__ $$aYDX$$beng$$cYDX$$dN$T$$dIDEBK$$dEBLCP$$dGW5XE$$dN$T 000760246 049__ $$aISEA 000760246 050_4 $$aQA174.2 000760246 050_4 $$aTA1-2040 000760246 08204 $$a512/.2$$223 000760246 08204 $$a620 000760246 24500 $$aAdvances in discretization methods :$$bdiscontinuities, virtual elements, fictitious domain methods /$$cedited by Giulio Ventura, Elena Benvenuti, editors. 000760246 264_1 $$aCham, Switzerland :$$bSpringer,$$c2016. 000760246 300__ $$a1 online resource (viii, 269 pages) :$$billustrations. 000760246 336__ $$atext$$btxt$$2rdacontent 000760246 337__ $$acomputer$$bc$$2rdamedia 000760246 338__ $$aonline resource$$bcr$$2rdacarrier 000760246 4901_ $$aSEMA SIMAI Springer Series,$$x2199-3041 ;$$vvolume 12 000760246 5050_ $$aPreface; Contents; Part I Enriched Methods for Flow and Mechanics in Heterogeneous Media; A Mixed Finite Element Method for Modeling the Fluid Exchange Between Microcirculation and Tissue Interstitium; 1 Introduction; 2 Model Set Up; 3 Variational Formulation; 4 Numerical Approximation; 4.1 Algebraic Formulation; 5 Numerical Experiments; 5.1 Coupled 3D-1D Problem on a Single Branch; 5.1.1 Numerical Results; 5.2 Coupled 3D-1D Problem on a Y-Shaped Bifurcation; 5.2.1 Numerical Results; 6 Conclusions; References; On a PDE-Constrained Optimization Approach for Flow Simulations in Fractured Media 000760246 5058_ $$a1 Introduction2 Problem Formulation; 3 A PDE-Constrained Optimization Approach; 3.1 Discretization Strategies; 4 Numerical Results; 4.1 Flow in Complex DFNs; 4.2 Unsteady Flow in DFNs; References; A Review of the XFEM-Based Approximation of Flow in Fractured Porous Media; 1 Introduction; 2 Governing Equations; 2.1 Equi-Dimensional Models; 2.1.1 Dual Formulation; 2.1.2 Primal Formulation; 2.2 Hybrid-Dimensional Models; 2.2.1 Dual Formulation; 2.2.2 Primal Formulation; 2.3 Branching and Intersections; 2.3.1 Assuming Pressure Continuity; 2.3.2 Robin Boundary Conditions 000760246 5058_ $$a2.3.3 Dual Formulation for X-Shaped Intersections2.4 Boundary Conditions; 2.4.1 Dirichlet Conditions for Fractured Porous Media; 2.4.2 Boundary and Coupling Conditions for Fracture Tips; 3 Numerical Discretization by Means of XFEM; 3.1 Modification and Addition of Basis Functions; 3.2 Primal Formulation with XFEM; 3.3 Dual Mixed Formulation; 3.4 Fracture Grids and Approximation of the Coupling Terms; 3.5 Basis Function Enrichment Around Fracture Tips; 4 Solvers; 4.1 Conditioning; 4.2 Iterative Approaches; 5 Conclusions; References 000760246 5058_ $$aPart II Enhanced Finite Element Formulations for Fracture and Interface ProblemsModeling of Fracture in Polycrystalline Materials; 1 Introduction; 2 Problem Statement; 2.1 Balance of Linear Momentum for a Fractured Body; 2.2 Constitutive Equations for Finite Deformations Crystal Plasticity; 2.3 Continuum Damage Mechanics Coupled to Crystal Plasticity; 2.4 Non-Local Extension of the GTN Model; 2.5 Weak Form of the Resulting Boundary Value Problem; 3 Discretisation of the Boundary Value Problem with the XFEM; 4 Quasistatic Crack Propagation with the XFEM; 4.1 Crack Propagation Criterion 000760246 5058_ $$a4.2 Reconstruction of the Fracture Surface4.2.1 Level Set Update by Solving a Hamilton-Jacobi Equation; 4.2.2 Global Crack Tracking Algorithm; 4.2.3 Accuracy of the Two Methods; 4.3 Crack Propagation Algorithm; 5 Numerical Examples; 5.1 Verification of the Non-Local Damage Formulation; 5.2 Crack Propagation in Crystals; 6 Conclusions; References; eXtended Hybridizable Discontinuous Galerkin (X-HDG) for Void and Bimaterial Problems; 1 Introduction; 2 X-HDG Formulation for Void Problems; 2.1 Local Problem for Standard Elements; 2.2 Local Problem for a Cut Element; 2.3 Global Problem 000760246 506__ $$aAccess limited to authorized users. 000760246 650_0 $$aDiscontinuous groups. 000760246 7001_ $$aVentura, Giulio,$$eeditor. 000760246 7001_ $$aBenvenuti, Elena,$$eeditor. 000760246 77608 $$iPrint version:$$z9783319412450$$z3319412450$$w(OCoLC)950952615 000760246 830_0 $$aSEMA SIMAI Springer series ;$$vvolume 12. 000760246 85280 $$bebk$$hSpringerLink 000760246 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-41246-7$$zOnline Access$$91397441.1 000760246 909CO $$ooai:library.usi.edu:760246$$pGLOBAL_SET 000760246 980__ $$aEBOOK 000760246 980__ $$aBIB 000760246 982__ $$aEbook 000760246 983__ $$aOnline 000760246 994__ $$a92$$bISE