000761130 000__ 06749cam\a2200589Ii\4500 000761130 001__ 761130 000761130 005__ 20230306142140.0 000761130 006__ m\\\\\o\\d\\\\\\\\ 000761130 007__ cr\cn\nnnunnun 000761130 008__ 160908s2016\\\\ne\a\\\\ob\\\\000\0\eng\d 000761130 019__ $$a958098842$$a958393488$$a961007881 000761130 020__ $$a9789402408416$$q(electronic book) 000761130 020__ $$a940240841X$$q(electronic book) 000761130 020__ $$z9789402408393 000761130 020__ $$z9402408398 000761130 035__ $$aSP(OCoLC)ocn958060434 000761130 035__ $$aSP(OCoLC)958060434$$z(OCoLC)958098842$$z(OCoLC)958393488$$z(OCoLC)961007881 000761130 040__ $$aHNK$$beng$$erda$$cHNK$$dHNK$$dN$T$$dGW5XE$$dYDX$$dN$T$$dEBLCP$$dIDEBK$$dNJR 000761130 049__ $$aISEA 000761130 050_4 $$aTK7871.95$$b.F47 2016 000761130 08204 $$a621.3815/284$$223 000761130 24500 $$aFerroelectric-gate field effect transistor memories :$$bdevice physics and applications /$$cByung-Eun Park, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai, Sung-Min Yoon, editors. 000761130 264_1 $$aDordrecht :$$bSpringer,$$c[2016] 000761130 264_4 $$c©2016 000761130 300__ $$a1 online resource (xviii, 347 pages) :$$billustrations. 000761130 336__ $$atext$$btxt$$2rdacontent 000761130 337__ $$acomputer$$bc$$2rdamedia 000761130 338__ $$aonline resource$$bcr$$2rdacarrier 000761130 347__ $$atext file$$bPDF$$2rda 000761130 4901_ $$aTopics in applied physics,$$x1437-0859 ;$$vvolume 131 000761130 504__ $$aIncludes bibliographical references. 000761130 5050_ $$aPreface; Contents; Contributors; Introduction; 1 Features, Principles and Development of Ferroelectric-Gate Field-Effect Transistors; Abstract; 1.1 Background of Ferroelectric Memories; 1.1.1 Historical Background; 1.1.2 Classification of Non-volatile Ferroelectric Memories; 1.2 Degradation and Improvement of Memorized States in MFIS Structures; 1.2.1 Degradation of Memorized States; 1.2.2 Theoretical Analysis of the Band Profile and Retention Degradation of MFIS Capacitors; 1.2.3 Calculated Time Dependences of Band Profile and Capacitance of the MFIS Structure 000761130 5058_ $$a1.2.4 Effects of Currents Through the Ferroelectric and Insulator Layers on the Retention Characteristics of the MFIS Structure1.2.5 Methods for Suppressing Leakage Current Through the MFIS Structure; 1.2.6 Retention Improvement by Heat and Radical Treatments; 1.3 Improvement of Ferroelectric Gate FETs; 1.3.1 1T2C-Type FET; 1.3.2 MFMIS FET; 1.3.3 High-k Insulating Layer; 1.3.4 New Materials; 1.4 Conclusion; Acknowledgments; References; Practical Characteristics of Inorganic Ferroelectric-Gate FETs: Si-Based Ferroelectric-Gate Field Effect Transistors 000761130 5058_ $$a2 Development of High-Endurance and Long-Retention FeFETs of Pt/CaySr1−y Bi2Ta2O9/(HfO2)x(Al2O3)1−x/Si Gate StacksAbstract; 2.1 Introduction; 2.2 Basic Fabrication Process and Characterization of Pt/SBT/HAO/Si FeFETs; 2.2.1 Fabrication Process; 2.2.2 Static Memory Window; 2.2.3 Retention; 2.2.4 Endurance; 2.2.5 Writing Speed; 2.2.6 Id-Vg and Retention at Elevated Temperatures; 2.3 Requirements to the Layers in MFIS; 2.3.1 Requirements to the Layers M, F, I; 2.3.2 Requirements Especially to the I-and-IL Layers; 2.4 Preparation of HAO for Pt/SBT/HAO/Si Gate Stack 000761130 5058_ $$a2.4.1 Single HAO(x) and the MIS Characters at Various Composition Ratios2.4.2 Comparison of O2 and N2 Ambient in Depositing HAO; 2.4.3 Effect of N2 Ambient Pressure Increase in Depositing HAO; 2.5 Nitriding and Oxinitriding Si of MFIS FeFET; 2.5.1 Direct Nitriding Si for Large Memory Window of FeFET; 2.5.2 Oxinitriding Si for Improving the Si Interface of FeFET; 2.6 Using CSBT Instead of SBT in FeFET; 2.7 Summary; Acknowledgments; References; 3 Nonvolatile Field-Effect Transistors Using Ferroelectric Doped HfO2 Films; Abstract; 3.1 Introduction; 3.2 FeFET Integration 000761130 5058_ $$a3.2.1 Ferroelectric Doped HfO23.2.2 Si Doped HfO2; 3.2.3 Other Doped HfO2; 3.3 Memory Properties of Ferroelectric Hafnium Oxide; 3.4 Hafnium Oxide Based Ferroelectric Field Effect Transistor; 3.4.1 Device Performance; 3.4.2 Device Reliability; 3.5 Summary and Outlook; Acknowledgments; References; Practical Characteristics of Inorganic Ferroelectric-Gate FETs: Thin Film-Based Ferroelectric-Gate Field Effect Transistors; 4 Oxide-Channel Ferroelectric-Gate Thin Film Transistors with Nonvolatile Memory Function; Abstract; 4.1 Introduction; 4.2 Features of Ferroelectric Gate Insulator 000761130 506__ $$aAccess limited to authorized users. 000761130 520__ $$aThis book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide readers with the development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass or plastic substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films. 000761130 588__ $$aDescription based on print version record. 000761130 650_0 $$aField-effect transistors. 000761130 650_0 $$aFerroelectric thin films. 000761130 7001_ $$aPark, Byung-eun,$$eeditor. 000761130 7001_ $$aIshiwara, Hiroshi,$$eeditor. 000761130 7001_ $$aOkuyama, Masanori,$$eeditor. 000761130 7001_ $$aSakai, Shigeki,$$eeditor. 000761130 7001_ $$aYoon, Sung-min,$$eeditor. 000761130 77608 $$iPrint version:$$tFerroelectric-gate Field Effect Transistor Memories.$$dSpringer Verlag 2016$$z9789402408393$$w(OCoLC)950953186 000761130 830_0 $$aTopics in applied physics ;$$vv. 131. 000761130 852__ $$bebk 000761130 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-94-024-0841-6$$zOnline Access$$91397441.1 000761130 909CO $$ooai:library.usi.edu:761130$$pGLOBAL_SET 000761130 980__ $$aEBOOK 000761130 980__ $$aBIB 000761130 982__ $$aEbook 000761130 983__ $$aOnline 000761130 994__ $$a92$$bISE