000762581 000__ 02308cam\a2200457Ki\4500 000762581 001__ 762581 000762581 005__ 20230306142229.0 000762581 006__ m\\\\\o\\d\\\\\\\\ 000762581 007__ cr\cn\nnnunnun 000762581 008__ 140204s2014\\\\sz\\\\\\ob\\\\001\0\eng\d 000762581 019__ $$a871283354 000762581 020__ $$a9783319005966$$q(electronic book) 000762581 020__ $$a3319005960$$q(electronic book) 000762581 020__ $$z9783319005959 000762581 035__ $$aSP(OCoLC)ocn869833445 000762581 035__ $$aSP(OCoLC)869833445$$z(OCoLC)871283354 000762581 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dYDXCP$$dGW5XE$$dDKDLA$$dGGVRL$$dCOO$$dTPH$$dOCLCF$$dOCLCQ$$dOCLCO 000762581 049__ $$aISEA 000762581 050_4 $$aQA331 000762581 08204 $$a515.9$$223 000762581 1001_ $$aTolsa, Xavier,$$eauthor. 000762581 24510 $$aAnalytic capacity, the Cauchy Transform, and non-homogeneous Calderón-Zygmund theory /$$cXavier Tolsa. 000762581 264_1 $$a[Basel] :$$bBirkhäuser,$$c[2014] 000762581 264_4 $$c©2014 000762581 300__ $$a1 online resource. 000762581 336__ $$atext$$btxt$$2rdacontent 000762581 337__ $$acomputer$$bc$$2rdamedia 000762581 338__ $$aonline resource$$bcr$$2rdacarrier 000762581 4901_ $$aProgress in mathematics ;$$v307 000762581 504__ $$aIncludes bibliographical references and index. 000762581 5050_ $$aIntroduction -- Basic notation -- Chapter 1. Analytic capacity -- Chapter 2. Basic Calderón-Zygmund theory with non doubling measures -- Chapter 3. The Cauchy transform and Menger curvature -- Chapter 4. The capacity [gamma]+ -- Chapter 5. A Tb theorem of Nazarov, Treil and Volberg -- Chapter 6. The comparability between [gamma] and [gamma] +, and the semiadditivity of analytic capacity -- Chapter 7. Curvature and rectifiability -- Chapter 8. Principal values for the Cauchy transform and rectifiability -- Chapter 9. RBMO([mu]) and H1 atb([mu]) -- Bibliography -- Index. 000762581 506__ $$aAccess limited to authorized users. 000762581 520__ $$aThis book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. 000762581 650_0 $$aAnalytic functions. 000762581 650_0 $$aCauchy transform. 000762581 650_0 $$aCalderón-Zygmund operator. 000762581 830_0 $$aProgress in mathematics (Boston, Mass.) ;$$vv. 307. 000762581 852__ $$bebk 000762581 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-00596-6$$zOnline Access$$91397441.1 000762581 909CO $$ooai:library.usi.edu:762581$$pGLOBAL_SET 000762581 980__ $$aEBOOK 000762581 980__ $$aBIB 000762581 982__ $$aEbook 000762581 983__ $$aOnline 000762581 994__ $$a92$$bISE