000762750 000__ 05478cam\a2200541Ii\4500 000762750 001__ 762750 000762750 005__ 20230306142237.0 000762750 006__ m\\\\\o\\d\\\\\\\\ 000762750 007__ cr\cn\nnnunnun 000762750 008__ 151201s2016\\\\sz\\\\\\ob\\\\000\0\eng\d 000762750 019__ $$a931593494$$a932333904 000762750 020__ $$a9783319271880$$q(electronic book) 000762750 020__ $$a3319271881$$q(electronic book) 000762750 020__ $$z9783319271873 000762750 0247_ $$a10.1007/978-3-319-27188-0$$2doi 000762750 035__ $$aSP(OCoLC)ocn930703339 000762750 035__ $$aSP(OCoLC)930703339$$z(OCoLC)931593494$$z(OCoLC)932333904 000762750 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dIDEBK$$dYDXCP$$dN$T$$dEBLCP$$dNUI$$dCOO$$dDEBSZ$$dOCLCF$$dOCLCQ$$dGW5XE 000762750 049__ $$aISEA 000762750 050_4 $$aQC174.86.N65 000762750 08204 $$a530.13$$223 000762750 1001_ $$aRyabov, Artem,$$eauthor. 000762750 24510 $$aStochastic dynamics and energetics of biomolecular systems /$$cArtem Ryabov. 000762750 264_1 $$a[Cham] :$$bSpringer,$$c[2016] 000762750 300__ $$a1 online resource. 000762750 336__ $$atext$$btxt$$2rdacontent 000762750 337__ $$acomputer$$bc$$2rdamedia 000762750 338__ $$aonline resource$$bcr$$2rdacarrier 000762750 4901_ $$aSpringer theses 000762750 500__ $$a"Doctoral Thesis accepted by the Charles University in Prague, Czech Republic. 000762750 504__ $$aIncludes bibliographical references. 000762750 5050_ $$aSupervisor's Foreword; Abstract; Preface; Contents; 1 Introduction; 1.1 Single-File Diffusion; 1.2 Stochastic Energetics; 1.3 Thesis Organization; References; 2 Basics of Single-File Diffusion; 2.1 Brownian Motion with Hard-Core Interaction; 2.1.1 ``Collisions'' of Two Particles; 2.1.2 Propagator for General N; 2.1.3 PDF of a Tagged Particle; 2.2 SFD in Homogeneous System with Constant Density; 2.2.1 Heuristic Arguments; 2.2.2 Derivation of Tracer PDF; 2.3 Comparison with SFD of N Particles; 2.3.1 Entropic Repulsive Forces; 2.3.2 Three Dynamical Regimes; 2.4 Single-File Diffusion Front. 000762750 5058_ $$a2.5 Further ReadingReferences; 3 SFD in a Semi-Infinite System with Absorbing Boundary; 3.1 Definition of the Model; 3.2 Finite Number of Interacting Particles; 3.2.1 Single Diffusing Particle; 3.2.2 Mapping on Single-Particle Diffusion in N Dimensions; 3.2.3 PDF of a Tagged Particle; 3.2.4 First-Passage Properties; 3.2.5 Tracer Dynamics with Absorption; 3.2.6 Tracer Dynamics Conditioned on Nonabsorption; 3.3 Thermodynamic Limit; 3.3.1 Evolution of Density Profile; 3.3.2 PDF of a Tagged Particle; 3.3.3 First-Passage Properties; 3.3.4 Tracer Dynamics with Absorption. 000762750 5058_ $$a3.3.5 Tracer Dynamics Conditioned on Nonabsorption3.4 Summarizing Remarks; References; 4 First-Passage Properties of a Tracer in a Finite Interval; 4.1 Definition of the Model; 4.2 Both Boundaries Are Absorbing; 4.2.1 Single Noninteracting Particle; 4.2.2 Fixed Initial Number of Interacting Particles; 4.2.3 Fixed Initial Density of Interacting Particles; 4.3 The Left Boundary is Absorbing, the Right Boundary is Reflecting; 4.3.1 Single Noninteracting Particle; 4.3.2 Fixed Initial Number of Particles; 4.3.3 Fixed Initial Density of Particles; 4.4 Summarizing Remarks; References. 000762750 5058_ $$a5 Basics of Stochastic Thermodynamics5.1 Definition of Stochastic Work and Heat; 5.2 Crooks Fluctuation Theorem and Jarzynski Equality; 5.3 Further Reading; References; 6 Work Distribution in Logarithmic-Harmonic Potential; 6.1 Definition of the Model; 6.2 Solution of the Fokker-Planck Equation for Arbitrary Protocol; 6.2.1 Green Function for Logarithmic Potential; 6.2.2 Joint Green Function for Work and Position; 6.3 PDF of Particle Position and Its Long-Time Asymptotics; 6.4 Work Fluctuations; 6.4.1 Characteristic Functions; 6.4.2 Simple Example; 6.5 Summarizing Remarks; References. 000762750 5058_ $$a7 Conclusions and OutlookAppendix A Limit Distribution of the Extreme; Appendix B Asymptotic Expansion of Conditioned PDF; Appendix C Different Driving Protocols. 000762750 506__ $$aAccess limited to authorized users. 000762750 520__ $$aThis thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory. 000762750 588__ $$aOnline resource; title from PDF title page (viewed December 10, 2015). 000762750 650_0 $$aNonequilibrium statistical mechanics. 000762750 650_0 $$aStochastic processes. 000762750 650_0 $$aBiomolecules. 000762750 77608 $$iPrint version:$$aRyabov, Artem.$$tStochastic Dynamics and Energetics of Biomolecular Systems.$$dCham : Springer International Publishing, ©2015$$z9783319271873 000762750 830_0 $$aSpringer theses. 000762750 852__ $$bebk 000762750 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-27188-0$$zOnline Access$$91397441.1 000762750 909CO $$ooai:library.usi.edu:762750$$pGLOBAL_SET 000762750 980__ $$aEBOOK 000762750 980__ $$aBIB 000762750 982__ $$aEbook 000762750 983__ $$aOnline 000762750 994__ $$a92$$bISE