000771117 000__ 04720cam\a2200505Ii\4500 000771117 001__ 771117 000771117 005__ 20230306142436.0 000771117 006__ m\\\\\o\\d\\\\\\\\ 000771117 007__ cr\un\nnnunnun 000771117 008__ 161206s2016\\\\ja\\\\\\ob\\\\100\0\eng\d 000771117 020__ $$a9784431564577$$q(electronic book) 000771117 020__ $$a4431564578$$q(electronic book) 000771117 020__ $$z9784431564553 000771117 035__ $$aSP(OCoLC)ocn965375114 000771117 035__ $$aSP(OCoLC)965375114 000771117 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dIDEBK$$dEBLCP$$dGW5XE$$dN$T$$dYDX$$dIDB 000771117 049__ $$aISEA 000771117 050_4 $$aTA357 000771117 050_4 $$aQA1-939 000771117 08204 $$a620.1/064015118$$223 000771117 08204 $$a510 000771117 1112_ $$aInternational Conference on Mathematical Fluid Dynamics, Present and Future$$d(2014 :$$cTokyo, Japan) 000771117 24510 $$aMathematical fluid dynamics, present and future :$$bTokyo, Japan, November 2014 /$$cYoshihiro Shibata, Yukihito Suzuki, editors. 000771117 264_1 $$aTokyo, Japan :$$bSpringer,$$c2016. 000771117 300__ $$a1 online resource. 000771117 336__ $$atext$$btxt$$2rdacontent 000771117 337__ $$acomputer$$bc$$2rdamedia 000771117 338__ $$aonline resource$$bcr$$2rdacarrier 000771117 4901_ $$aSpringer proceedings in mathematics & statistics,$$x2194-1009 ;$$vvolume 183 000771117 504__ $$aIncludes bibliographical references. 000771117 5050_ $$aPreface; Acknowledgements; Contents; Contributors; Part I Multiphase Flows; 1 Nonconvergence of the Capillary Stress Functional for Solutions of the Convective Cahn-Hilliard Equation; 1.1 Introduction; 1.2 Notation and Basic Assumptions; 1.3 Nonconvergence Result; References; 2 On the Interface Formation Model for Dynamic Triple Lines; 2.1 Introduction; 2.2 Integral Balances; 2.3 Transport Theorems; 2.4 Local Balances; 2.5 Entropy Production and Closure Relations; 2.6 Isothermal Case with Vanishing Triple Line Mass; 2.7 Thermodynamical Consistency and Equilibria; References 000771117 5058_ $$a3 Global Solvability of the Problem on Two-Phase Capillary Fluid Motion in the Oberbeck -- Boussinesq Approximation3.1 Statement of the Problem and the Main Result; 3.2 An Energy Estimate of the Solution; 3.3 Linearized Problems; 3.4 Global Solvability of the Problem (3.1), (3.4), (3.3); 3.4.1 Conclusions; References; 4 Stability of Steady Flow Past a Rotating Body; 4.1 Motivation and Introduction; 4.2 Auxiliary Results; 4.3 The Main Theorem on Stability; References; 5 Asymptotic Structure of Steady Stokes Flow Around a Rotating Obstacle in Two Dimensions; 5.1 Introduction; 5.2 Results 000771117 5058_ $$a5.3 Fundamental Solution5.4 Proof of Theorem 5.2.1; 5.5 Proof of Theorem 5.2.2; References; 6 Toward Understanding Global Flow Structure; 6.1 Introduction; 6.2 Phenomena; 6.2.1 Localized Convection Patterns in Binary Fluid Convection; 6.2.2 Localized Convection Patterns in Bioconvection; 6.2.3 Surface Switching; 6.3 Analysis Methods; 6.3.1 Orbit Analysis Applying Covariant Lyapunov Analysis; 6.3.2 Generating Cellular Automata Rule from Measurement Data Alone; 6.4 Concluding Remarks; References; 7 Mathematical and Numerical Analysis of the Rayleigh-Plesset and the Keller Equations 000771117 5058_ $$a7.1 Introduction7.2 Mathematical Models for Motion of a Spherical Bubble; 7.2.1 The Rayleigh-Plesset Equation; 7.2.2 The Rayleigh-Plesset-Keller Equation; 7.3 Mathematical Analysis; 7.4 A Hamiltonian Formulation of the Rayleigh-Plesset-Keller Equation; 7.4.1 A Hamiltonian Formulation of the Rayleigh-Plesset Equation; 7.4.2 A Hamiltonian Formulation of the Keller-Herring Equation; 7.5 Discrete Gradient Schemes for the Rayleigh-Plesset and Keller Equations; 7.6 Numerical Results; 7.6.1 The Inviscid Rayleigh-Plesset Equation; 7.6.2 The Keller Equation; 7.7 Concluding Remarks; References 000771117 5058_ $$a8 On the Amplitude Equation of Approximate Surface Waves on the Plasma-Vacuum Interface8.1 Introduction; 8.2 The Plasma-Vacuum Interface Problem; 8.3 The Asymptotic Expansion; 8.4 The First Order Equations; 8.5 The Second Order Equations; 8.5.1 The Second Order Equations in the Plasma Region; 8.5.2 The Second Order Equations in Vacuum; 8.5.3 The Second Order Jump Conditions; 8.5.4 The Kernel; 8.6 Noncanonical Variables and Well-Posedness; 8.6.1 Well-Posedness of the Amplitude Equation; 8.6.2 Regularity of the First Order Terms U(1),V(1); References 000771117 506__ $$aAccess limited to authorized users. 000771117 650_0 $$aFluid dynamics$$xMathematical models$$vCongresses. 000771117 650_0 $$aFluid dynamics$$xMathematics$$vCongresses. 000771117 7001_ $$aShibata, Yoshihiro,$$eeditor. 000771117 7001_ $$aSuzuki, Yukihito,$$eeditor. 000771117 830_0 $$aSpringer proceedings in mathematics & statistics ;$$vv. 183. 000771117 852__ $$bebk 000771117 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-4-431-56457-7$$zOnline Access$$91397441.1 000771117 909CO $$ooai:library.usi.edu:771117$$pGLOBAL_SET 000771117 980__ $$aEBOOK 000771117 980__ $$aBIB 000771117 982__ $$aEbook 000771117 983__ $$aOnline 000771117 994__ $$a92$$bISE