Linked e-resources
Details
Table of Contents
Foreword; Acknowledgments; Contents; List of Contributors; 1 Introduction; 1.1 Geothermal Systems; 1.2 Geothermal Resources; 1.3 Utilizing Shallow Geothermal Resources; 1.4 Tutorial and Course Structure; 2 Theory: Governing Equations and Model Implementations; 2.1 Conceptual Model of the BHEs; 2.2 Governing Equations; 2.2.1 Governing Equations for the Heat Transport Process in Soil; 2.2.2 Governing Equations for the Borehole Heat Exchangers; 2.2.3 Calculation of the Cauchy Type of Boundary Conditions; 2.3 Numerical Model; 2.3.1 Mesh Arrangement; 2.3.2 Finite Element Discretization.
2.3.3 Assembly of the Global Equation System2.3.4 Picard Iterations and Time Stepping Schemes; 3 OGS Project: Simulating Heat Transport Model with BHEs; 3.1 Download and Compile the Source Code; 3.1.1 Download the Source Code; 3.1.2 Using CMake to Configure the Building Project; 3.1.3 Compiling the Code; 3.2 Define Heat Transport Process with BHEs; 3.2.1 Process Definition; 3.2.2 Deactivated Sub-domains; 3.2.3 Primary Variables; 3.3 Geometry of BHEs; 3.4 Mesh of BHEs; 3.5 Parameters of BHEs; 3.6 Initial Conditions for the BHE; 3.7 Boundary Conditions for the BHE; 3.8 Output of Temperatures.
3.9 Running the OGS Model3.10 Visualization of Temperature Evolution; 3.10.1 Visualization of Soil Temperatures; 3.10.2 Visualization of BHE Temperatures; 4 BHE Meshing Tool; 4.1 Requirement on the Mesh; 4.2 Input File for the Meshing Tool; 4.3 Output; 5 Benchmarks; 5.1 Borehole Heat Exchangers: Comparison to Line Source Model; 5.1.1 ILS Analytical Solution; 5.1.2 Numerical Line Source Model; 5.1.3 Numerical BHE Model; 5.1.4 Results; 5.2 Borehole Heat Exchangers: Comparison to Sandbox Experiment; 5.2.1 Model Setup; 5.2.2 OGS Input Files; 5.2.2.1 Initial and Boundary Conditions.
5.2.2.2 RFD Data File5.2.2.3 Medium Properties; 5.2.3 Results; 6 Case Study: A GSHP System in the Leipzig Area; 6.1 The Leipzig-Area Model; 6.1.1 Scenario; 6.1.2 BHE Design; 6.1.3 Model Domain; 6.1.4 Initial and Boundary Conditions; 6.1.5 Input Files; 6.1.6 Geometry; 6.1.7 Process Definition; 6.1.8 Numerical Properties; 6.1.9 Time Discretization; 6.1.10 Initial and Boundary Conditions; 6.1.11 Data RFD File; 6.1.12 Fluid Properties; 6.1.13 Solid Phase Properties; 6.1.14 Medium Properties; 6.2 Simulation Results; 6.3 Implifications of the Model.
6.3.1 Overall Dynamics of the BHE Coupled GSHP System6.3.2 The Role of the Heat Pump; 6.3.3 The Price of Under-Design; 7 Summary and Outlook; A Symbols; B Keywords; B.1 GLI: Geometry; B.2 MSH: Finite Element Mesh; B.3 PCS: Process Definition; B.4 NUM: Numerical Properties; B.5 TIM: Time Discretization; B.6 IC: Initial Conditions; B.7 BC: Boundary Conditions; B.8 ST: Source/Sink Terms; B.9 MFP: Fluid Properties; B.10 MSP: Solid Properties; B.11 MMP: Porous Medium Properties; B.12 OUT: Output Parameters; References.
2.3.3 Assembly of the Global Equation System2.3.4 Picard Iterations and Time Stepping Schemes; 3 OGS Project: Simulating Heat Transport Model with BHEs; 3.1 Download and Compile the Source Code; 3.1.1 Download the Source Code; 3.1.2 Using CMake to Configure the Building Project; 3.1.3 Compiling the Code; 3.2 Define Heat Transport Process with BHEs; 3.2.1 Process Definition; 3.2.2 Deactivated Sub-domains; 3.2.3 Primary Variables; 3.3 Geometry of BHEs; 3.4 Mesh of BHEs; 3.5 Parameters of BHEs; 3.6 Initial Conditions for the BHE; 3.7 Boundary Conditions for the BHE; 3.8 Output of Temperatures.
3.9 Running the OGS Model3.10 Visualization of Temperature Evolution; 3.10.1 Visualization of Soil Temperatures; 3.10.2 Visualization of BHE Temperatures; 4 BHE Meshing Tool; 4.1 Requirement on the Mesh; 4.2 Input File for the Meshing Tool; 4.3 Output; 5 Benchmarks; 5.1 Borehole Heat Exchangers: Comparison to Line Source Model; 5.1.1 ILS Analytical Solution; 5.1.2 Numerical Line Source Model; 5.1.3 Numerical BHE Model; 5.1.4 Results; 5.2 Borehole Heat Exchangers: Comparison to Sandbox Experiment; 5.2.1 Model Setup; 5.2.2 OGS Input Files; 5.2.2.1 Initial and Boundary Conditions.
5.2.2.2 RFD Data File5.2.2.3 Medium Properties; 5.2.3 Results; 6 Case Study: A GSHP System in the Leipzig Area; 6.1 The Leipzig-Area Model; 6.1.1 Scenario; 6.1.2 BHE Design; 6.1.3 Model Domain; 6.1.4 Initial and Boundary Conditions; 6.1.5 Input Files; 6.1.6 Geometry; 6.1.7 Process Definition; 6.1.8 Numerical Properties; 6.1.9 Time Discretization; 6.1.10 Initial and Boundary Conditions; 6.1.11 Data RFD File; 6.1.12 Fluid Properties; 6.1.13 Solid Phase Properties; 6.1.14 Medium Properties; 6.2 Simulation Results; 6.3 Implifications of the Model.
6.3.1 Overall Dynamics of the BHE Coupled GSHP System6.3.2 The Role of the Heat Pump; 6.3.3 The Price of Under-Design; 7 Summary and Outlook; A Symbols; B Keywords; B.1 GLI: Geometry; B.2 MSH: Finite Element Mesh; B.3 PCS: Process Definition; B.4 NUM: Numerical Properties; B.5 TIM: Time Discretization; B.6 IC: Initial Conditions; B.7 BC: Boundary Conditions; B.8 ST: Source/Sink Terms; B.9 MFP: Fluid Properties; B.10 MSP: Solid Properties; B.11 MMP: Porous Medium Properties; B.12 OUT: Output Parameters; References.