000772388 000__ 03226cam\a2200553Ii\4500 000772388 001__ 772388 000772388 005__ 20230306142538.0 000772388 006__ m\\\\\o\\d\\\\\\\\ 000772388 007__ cr\cn\nnnunnun 000772388 008__ 161213s2016\\\\sz\\\\\\ob\\\\000\0\eng\d 000772388 019__ $$a971059567 000772388 020__ $$a9783319496672$$q(electronic book) 000772388 020__ $$a3319496670$$q(electronic book) 000772388 020__ $$z9783319496665 000772388 0247_ $$a10.1007/978-3-319-49667-2$$2doi 000772388 035__ $$aSP(OCoLC)ocn965825396 000772388 035__ $$aSP(OCoLC)965825396$$z(OCoLC)971059567 000772388 040__ $$aN$T$$beng$$erda$$epn$$cN$T$$dIDEBK$$dEBLCP$$dDKDLA$$dOCLCO$$dGW5XE$$dN$T$$dYDX$$dIDB$$dAZU$$dUPM$$dCCO$$dUAB$$dCOO$$dOCLCQ 000772388 049__ $$aISEA 000772388 050_4 $$aQA372 000772388 050_4 $$aQA1-939 000772388 08204 $$a515/.354$$223 000772388 08204 $$a510 000772388 1001_ $$aCamporesi, Roberto,$$eauthor. 000772388 24513 $$aAn introduction to linear ordinary differential equations using the impulsive response method and factorization /$$cRoberto Camporesi. 000772388 264_1 $$aCham, Switzerland :$$bSpringer,$$c2016. 000772388 300__ $$a1 online resource. 000772388 336__ $$atext$$btxt$$2rdacontent 000772388 337__ $$acomputer$$bc$$2rdamedia 000772388 338__ $$aonline resource$$bcr$$2rdacarrier 000772388 347__ $$atext file$$bPDF$$2rda 000772388 4901_ $$aPoliTO Springer series 000772388 504__ $$aIncludes bibliographical references. 000772388 5050_ $$aAbstract; 1 Introduction; 2 The Case of Constant Coefficients; 2.1 n=1; 2.2 n=2; 2.3 The General Case; 2.4 Explicit Formulas for the Impulsive Response; 2.5 The Method of Undetermined Coefficients; 3 The Case of Variable Coefficients; 3.1 n=1; 3.2 n=2; 3.3 The General Case; 3.3.1 The Factorization Problem; 3.3.2 The Non-homogeneous Equation; 3.3.3 The Homogeneous Equation; 3.4 The Connection with Variation of Parameters; 3.5 The Approach by Linear Systems and the Peano-Baker Series; References. 000772388 506__ $$aAccess limited to authorized users. 000772388 520__ $$aThis book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana's result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients. 000772388 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 16, 2017). 000772388 650_0 $$aDifferential equations, Linear. 000772388 650_0 $$aMathematics. 000772388 650_0 $$aMatrix theory. 000772388 650_0 $$aAlgebra. 000772388 650_0 $$aDifferential equations. 000772388 650_0 $$aCalculus of variations. 000772388 77608 $$iPrint version:$$z9783319496665 000772388 830_0 $$aPoliTO Springer series. 000772388 852__ $$bebk 000772388 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-49667-2$$zOnline Access$$91397441.1 000772388 909CO $$ooai:library.usi.edu:772388$$pGLOBAL_SET 000772388 980__ $$aEBOOK 000772388 980__ $$aBIB 000772388 982__ $$aEbook 000772388 983__ $$aOnline 000772388 994__ $$a92$$bISE