000772470 000__ 04685cam\a2200541Mi\4500 000772470 001__ 772470 000772470 005__ 20230306142540.0 000772470 006__ m\\\\\o\\d\\\\\\\\ 000772470 007__ cr\cn\nnnunnun 000772470 008__ 170107s2017\\\\sz\\\\\\o\\\\\000\0\eng\d 000772470 019__ $$a967816776$$a968186593 000772470 020__ $$a9783319476537$$q(electronic book) 000772470 020__ $$a331947653X$$q(electronic book) 000772470 020__ $$z3319476521 000772470 020__ $$z9783319476520 000772470 035__ $$aSP(OCoLC)ocn967876894 000772470 035__ $$aSP(OCoLC)967876894$$z(OCoLC)967816776$$z(OCoLC)968186593 000772470 040__ $$aEBLCP$$beng$$epn$$cEBLCP$$dN$T$$dYDX$$dIDEBK$$dGW5XE$$dOCLCF$$dUAB$$dOCLCQ 000772470 049__ $$aISEA 000772470 050_4 $$aRC386.6.E43 000772470 050_4 $$aTA1-2040 000772470 08204 $$a616.8/047547$$223 000772470 08204 $$a620 000772470 1001_ $$aSiuly, Siuly. 000772470 24510 $$aEEG Signal Analysis and Classification :$$bTechniques and Applications. 000772470 260__ $$aCham :$$bSpringer,$$c2017. 000772470 300__ $$a1 online resource (257 pages). 000772470 336__ $$atext$$btxt$$2rdacontent 000772470 337__ $$acomputer$$bc$$2rdamedia 000772470 338__ $$aonline resource$$bcr$$2rdacarrier 000772470 4901_ $$aHealth Information Science 000772470 500__ $$a6.3 Implementation of the Proposed Methodology. 000772470 5050_ $$aPreface; Contents; Introduction; 1 Electroencephalogram (EEG) and Its Background; 1.1 What Is EEG?; 1.2 Generation Organism of EEG Signals in the Brain; 1.3 Characteristics and Nature of EEG Signals; 1.4 Abnormal EEG Signal Patterns; References; 2 Significance of EEG Signals in Medical and Health Research; 2.1 EEG in Epilepsy Diagnosis; 2.2 EEG in Dementia Diagnosis; 2.3 EEG in Brain Tumour Diagnosis; 2.4 EEG in Stroke Diagnosis; 2.5 EEG in Autism Diagnosis; 2.6 EEG in Sleep Disorder Diagnosis; 2.7 EEG in Alcoholism Diagnosis; 2.8 EEG in Anaesthesia Monitoring; 2.9 EEG in Coma and Brain Death. 000772470 5058_ $$a2.10 EEG in Brain-Computer Interfaces (BCIs)2.11 Significance of EEG Signal Analysis and Classification; 2.12 Concept of EEG Signal Classification; 2.13 Computer-Aided EEG Diagnosis; References; 3 Objectives and Structures of the Book; 3.1 Objectives; 3.2 Structure of the Book; 3.3 Materials; 3.3.1 Analyzed Data; 3.3.1.1 The Epileptic EEG Data; 3.3.1.2 Dataset IVa of BCI Competition III; 3.3.1.3 Dataset IVb of BCI Competition III; 3.3.1.4 Mental Imagery EEG Data of BCI Competition III; 3.3.1.5 Ripley Data; 3.3.2 Performance Evaluation Parameters. 000772470 5058_ $$a3.4 Commonly Used Methods for EEG Signal Classification3.4.1 Methods for Epilepsy Diagnosis; 3.4.2 Methods for Mental State Recognition in BCIs; References; Techniques for the Diagnosis of Epileptic Seizures from EEG Signals; 4 Random Sampling in the Detection of Epileptic EEG Signals; 4.1 Why Random Sampling in Epileptic EEG Signal Processing?; 4.2 Simple Random Sampling Based Least Square Support Vector Machine; 4.2.1 Random Sample and Sub-sample Selection Using SRS Technique; 4.2.2 Feature Extraction from Different Sub-samples. 000772470 5058_ $$a4.2.3 Least Square Support Vector Machine (LS-SVM) for Classification4.3 Experimental Results and Discussions; 4.3.1 Results for Epileptic EEG Datasets; 4.3.2 Results for the Mental Imagery Tasks EEG Dataset; 4.3.3 Results for the Two-Class Synthetic Data; 4.4 Conclusions; References; 5 A Novel Clustering Technique for the Detection of Epileptic Seizures; 5.1 Motivation; 5.2 Clustering Technique Based Scheme; 5.2.1 Clustering Technique (CT) for Feature Extraction; 5.3 Implementation of the Proposed CT-LS-SVM Algorithm; 5.4 Experimental Results and Discussions. 000772470 5058_ $$a5.4.1 Classification Results for the Epileptic EEG Data5.4.2 Classification Results for the Motor Imagery EEG Data; 5.5 Conclusions; References; 6 A Statistical Framework for Classifying Epileptic Seizure from Multi-category EEG Signals; 6.1 Significance of the OA Scheme in the EEG Signals Analysis and Classification; 6.2 Optimum Allocation-Based Framework; 6.2.1 Sample Size Determination; 6.2.2 Epoch Determination; 6.2.3 Optimum Allocation; 6.2.4 Sample Selection; 6.2.5 Classification by Multiclass Least Square Support Vector Machine (MLS-SVM); 6.2.6 Classification Outcomes. 000772470 506__ $$aAccess limited to authorized users. 000772470 588__ $$aDescription based on print version record. 000772470 650_0 $$aElectroencephalography. 000772470 7001_ $$aLi, Yan. 000772470 7001_ $$aZhang, Yanchun. 000772470 77608 $$iPrint version:$$aSiuly, Siuly.$$tEEG Signal Analysis and Classification : Techniques and Applications.$$dCham : Springer International Publishing, ©2017$$z9783319476520 000772470 830_0 $$aHealth information science. 000772470 852__ $$bebk 000772470 85640 $$3SpringerLink$$uhttps://univsouthin.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-47653-7$$zOnline Access$$91397441.1 000772470 909CO $$ooai:library.usi.edu:772470$$pGLOBAL_SET 000772470 980__ $$aEBOOK 000772470 980__ $$aBIB 000772470 982__ $$aEbook 000772470 983__ $$aOnline 000772470 994__ $$a92$$bISE